1 / 23

11-3

Using Slopes and Intercepts. 11-3. HOMEWORK & Learning Goal. Lesson Presentation. Pre-Algebra. HOMEWORK answers. Page 548 #1-5. Pre-Algebra HOMEWORK. Page 553 #1-8. Our Learning Goal.

brittanie
Download Presentation

11-3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using Slopes and Intercepts 11-3 HOMEWORK & Learning Goal Lesson Presentation Pre-Algebra

  2. HOMEWORK answers Page 548 #1-5

  3. Pre-Algebra HOMEWORK Page 553 #1-8

  4. Our Learning Goal Students will be able to graph linesusing linear equations, understand the slope of a line and graph inequalities.

  5. Our Learning Goal Assignments • Learn to identify and graph linear equations. • Learn to find the slope of a line and use slope to understand and draw graphs. • Learn to use slopes and intercepts to graph linear equations. • Learn to find the equation of a line given one point and the slope. • Learn to recognize direct variation by graphing tables of data and checking for constant ratios. • Learn to graph inequalities on the coordinate plane. • Learn to recognize relationships in data and find the equation of a line of best fit.

  6. Today’s Learning Goal Assignment Learn to use slopes and intercepts to graph linear equations.

  7. Vocabulary x-intercept y-intercept slope-intercept form

  8. You can graph a linear equation easily by finding the x-intercept and the y-intercept. The x-intercept of a line is the value of x where the line crosses the x-axis (where y = 0). The y-intercept of a line is the value of y where the line crosses the y-axis (where x = 0).

  9. 4x = 12 4 4 Additional Example 1: Finding x-intercepts and y-intercepts to Graph Linear Equations Find the x-intercept and y-intercept of the line 4x – 3y = 12. Use the intercepts to graph the equation. Find the x-intercept (y = 0). 4x – 3y = 12 4x – 3(0) = 12 4x = 12 x = 3 The x-intercept is 3.

  10. -3y = 12 -3 -3 Additional Example 1 Continued Find the y-intercept (x = 0). 4x – 3y = 12 4(0) – 3y = 12 –3y = 12 y = –4 The y-intercept is –4.

  11. Additional Example 1 Continued The graph of 4x – 3y = 12 is the line that crosses the x-axis at the point (3, 0) and the y-axis at the point (0, –4).

  12. 8x = 24 8 8 Try This: Example 1 Find the x-intercept and y-intercept of the line 8x – 6y = 24. Use the intercepts to graph the equation. Find the x-intercept (y = 0). 8x – 6y = 24 8x – 6(0) = 24 8x = 24 x = 3 The x-intercept is 3.

  13. -6y = 24 -6 -6 Try This: Example 1 Continued Find the y-intercept (x = 0). 8x – 6y = 24 8(0) – 6y = 24 –6y = 24 y = –4 The y-intercept is –4.

  14. Try This: Example 1 Continued The graph of 8x – 6y = 24 is the line that crosses the x-axis at the point (3, 0) and the y-axis at the point (0, –4).

  15. y = mx + b Slope y-intercept In an equation written in slope-intercept form, y = mx + b, m is the slope and b is the y-intercept.

  16. Helpful Hint For an equation such as y = x – 6, write it as y = x + (–6) to read the y-intercept, –6.

  17. Additional Example 2A: Using Slope-Intercept Form to Find Slopes and y-intercepts Write each equation in slope-intercept form, and then find the slope and y-intercept. A. 2x + y = 3 2x + y = 3 –2x–2x Subtract 2x from both sides. y = 3 – 2x Rewrite to match slope-intercept form. y = –2x + 3 The equation is in slope-intercept form. m = –2 b= 3 The slope of the line 2x + y = 3 is –2, and the y-intercept is 3.

  18. Try This: Example 2A Write each equation in slope-intercept form, and then find the slope and y-intercept. A. 4x + y = 4 –4x–4x Subtract 4x from both sides. y = 4 – 4x Rewrite to match slope-intercept form. y = –4x + 4 The equation is in slope-intercept form. m = –4 b= 4 The slope of the line 4x + y = 4 is –4, and the y-intercept is 4.

  19. 5y = x 5 3 3 5 5 y = x + 0 3 m = 5 3 The slope of the line 5y = 3x is , and the y-intercept is 0. 5 Additional Example 2B: Using Slope-Intercept Form to Find Slopes and y-intercepts B. 5y = 3x 5y = 3x Divide both sides by 5 to solve for y. The equation is in slope-intercept form. b = 0

  20. 7y = x 7 2 2 7 7 y = x + 0 2 m = 7 2 The slope of the line 7y = 2x is , and the y-intercept is 0. 7 Try This: Example 2B B. 7y = 2x 7y = 2x Divide both sides by 7 to solve for y. The equation is in slope-intercept form. b = 0

  21. 3y 3 4 –4x 3 3 4 9 3 = + 3 4 y =- x + 3 m =- 3 The slope of the line 4x+ 3y = 9 is – , and the y-intercept is 3. Additional Example 2C: Using Slope-Intercept Form to Find Slopes and y-intercepts C. 4x + 3y = 9 4x + 3y = 9 –4x–4x Subtract 4x from both sides. 3y = 9 – 4x Rewrite to match slope-intercept form. 3y = –4x + 9 Divide both sides by 3. The equation is in slope-intercept form. b= 3

  22. 4y 4 5 –5x 4 4 5 8 4 = + 4 5 y =- x + 2 m =- 4 The slope of the line 5x + 4y = 8 is – , and the y-intercept is 2. Try This: Example 2C C. 5x + 4y = 8 5x + 4y = 8 –5x–5x Subtract 5x from both sides. 4y = 8 – 5x Rewrite to match slope-intercept form. 5x + 4y = 8 Divide both sides by 4. The equation is in slope-intercept form. b= 2

  23. y = – x + 2 3 4 Lesson Quiz Write each equation in slope-intercept form, and then find the slope and y-intercept. 1. 2y – 6x = –10 2. –5y – 15x = 30 Write the equation of the line that passes through each pair of points in slope-intercept form. 3. (0, 2) and (4, –1) 4. (–2, 2) and (4, –4) y = 3x – 5; m = 3; b = –5 y = –3x – 6; m = –3; b = –6 y = –x

More Related