500 likes | 710 Views
Monte-Carlo calculations in reactor design. G.B. Bruna FRAMATOME-ANP. Monte-Carlo calculations in reactor design. Samples : HTR-10 Benchmark analysis, Rhodium SPND detectors, Mock-up experiments with void, Others. HTR-10 Benchmark analysis. Benchmark problem definition
E N D
Monte-Carlo calculations in reactor design G.B. Bruna FRAMATOME-ANP
Monte-Carlo calculations in reactor design • Samples : • HTR-10 Benchmark analysis, • Rhodium SPND detectors, • Mock-up experiments with void, • Others ....
HTR-10 Benchmark analysis • Benchmark problem definition • Sensitivity studies • Main Results
HTR-10 Benchmark analysis • Benchmark problem definition • 1) Cold (Temperature 300°K) • 2) U235 enrichment 3.3% à to 9.9% • 3) 31 or 33 element assemblies • 4) Two types of B4C burnable poisons • 5) 20 different mediums (colors) • 6) He core-cooling channels • 7) 150 fuel elements (30 columns, cylindrical core) • 90 fuel elements (18 columns, annular core) • 8) Four Benchmark configurations : • - 18 columns - 19 columns • - 24columns - 30 columns
HTR-10 Benchmark analysis • Heterogeneity levels • Coated micro-balls (first level)Compact (second level)Fuel assembly : 31 or 33 element compacts (third level)Axial superposition of 5 elements (forth level) • Radial core loading (fifth level)
HTR-10 Benchmark analysis 31-Element Assembly Compact/Element Burnable Poison
HTR-10 Benchmark analysis HTR-10 Benchmark analysis Hexagonal Compact
HTR-10 Benchmark analysis Hexagonal Lattice
HTR-10 Benchmark analysis Cubic Lattice
HTR-10 Benchmark analysis Radial Heterogeneity inside the Hexagonal Compact
HTR-10 Benchmark analysis Unclustered 18-Column Core
HTR-10 Benchmark analysis Unclustered 19-Column Core
HTR-10 Benchmark analysis Unclustered 24-Column Core
HTR-10 Benchmark analysis Unclustered 30-Column Core
HTR-10 Benchmark analysis 1/4 30-Column Unclustered Core
HTR-10 Benchmark analysis Clusters inside 30-Column Core
HTR-10 Benchmark analysis Clustered 30-Column Core
HTR-10 Benchmark analysis Adjusted Clustered 30-Column Core
HTR-10 Benchmark analysis • Sensitivity-studies(1 pcm = 1.E-5) • Graphite impurities > 5000 pcm (total) • Dummy assemblies ~3000 pcm • Helium channels ~2000 pcm • Bullets lattice arranged vs. random < 200 pcm • Compact heterogeneity < 200 pcm • First-level homogenization < 500 pcm • Second-level homogenization 10000 pcm • Data Libraries JEFF2 vs. ENDF-BVI ~500 pcm
HTR-10 Benchmark analysis • Configuration Experiment Calculation • 18 col. ann. core Sub-critical 0.99700 • 19 col. ann. core Over-critical 1.01300 • clustered 24 col. • ann. core 1.0000 1.00110 • clustered 30 col. • cylindrical core 1.0000 0.99980
HTR-10 Benchmark analysis • Core Average 5 Labs Japan(2), Holland, Russia, USA (ORNL) • 18 col. ann. core Keff 1.02150 • clustered 24 col. critical rod ins. 82 cm ann. core • clustered 30 col. • cylindrical core critical rod ins. 123 cm
Rhodium SPN Detectors • US-3D Device • Physics of Rhodium SPN Detectors • Monte-Carlo studies on : • heterogeneity • Rhodium burn-out
MOVABLE FLUX MAPPING SYSTEM ALARMS US-3D OPERATION AID SYSTEM CORE Rhodium SPN Detectors
Rhodium SPN Detectors Detectors n Generic detector (i, j, k)
Rhodium SPN Detectors Real Geometry (Sec. R-R) Axial heterogeneity Radial heterogeneity APOLLO MCNP Geometry Representation in APOLLO
Rhodium SPN Detectors Self-shielding effect
5000 b 10 Mev Gr. 1 0.907 Mev Gr. 6 Gr. 5 Gr. 4 Gr. 3 Gr.2 7.466 Kev 0.134 ev 0.625 ev 4.129 ev Rhodium SPN Detectors The Rh microscopic absorption cross-section
Rhodium SPN Detectors Rh reaction rates
Rhodium SPN Detectors Rh reaction rates
RR per annular region 50.4% 28.4% 21.3% Rhodium SPN Detectors Rh reaction rates
Rhodium SPN Detectors Rh reaction rates
Mock-up experiments with void • Physical analysis of heterogeneous void • Monte-Carlo calculations of mock-up experiments: • EPICURE • ERASME • Others
Void of mock-up experiments IAEA Benchmark Sample Geometry Homogeneous Void Infinite Medium Heterogeneous Void Cluster
Mock-up experiments with void Homogeneous Void Infinite Medium Heterogeneous Void Cluster
Mock-up experiments with void UO2 MOX
Mock-up experiments with void • Cluster of 9 {10*10 pin} assemblies in Inf. Med. (pitch 1.26 cm), with a central MOX assembly with Pu enrichment: • HMOX 14.40 • MMOX 9.70 • LMOX 5.40 • (UO2 3.35)
Mock-up experiments with void • In thewet MMOX cluster, typical values of Kinf* and Imp* are the following: • Zone Imp* Kinf* • UO20.88 1.3697 • MOX 0.12 1.1447 • Whole Cluster 1.3427 • *Rouded off values
Mock-up experiments with void • In the MMOX clusterwith central void,typical values of Kinf*and Imp* are the following: • Zone Imp* Kinf* • UO21.3697 0.96 • MOX0.7738 0.04 • Whole Cluster1.3458 • *Rounded off values
Mock-up experiments with void Wet MOX Dry XS Flux
Mock-up experiments with void UOX-UOX EPICURE Dried zone 3.7% UOX
Low and High Enrich. UOX-MOX EPICURE MOX 3.7% UOX
Mock-up experiments with void (Low Enrich. UOX-UOX EPICURE)
Mock-up experiments with void (UOX-MOX EPICURE)
Mock-up experiments with void (ERASME Series Experiments)
Mock-up experiments with void (Synopsis of All Experiments)
Mock-up experiments with void (Low Enrich. EPICURE with bubble)
Mock-up experiments with void (High Enrich. EPICURE with bubble)
Mock-up experiments with void • Discrepancies on reactivity are lower than 100 pcm on the average of 35 experiments, without any significant trend; • No biases have been observed between JEF-2.2 and ENDFB-VI libraries, except for very hard spectra where ENDFB-VI overestimates reactivity up to 1000 pcm.
Others ... • Other Monte-Carlo studies : • Criticality, • Sub-critical approach to divergence, • Fluence and vessel life-time.