1 / 26

Automatic Facets: Faceted Navigation and Entity Extraction

Automatic Facets: Faceted Navigation and Entity Extraction. Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services http://www.kapsgroup.com. Agenda. Introduction: Elements Facets, Taxonomies, Software, People 3 Environments

brook
Download Presentation

Automatic Facets: Faceted Navigation and Entity Extraction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Automatic Facets:Faceted Navigation and Entity Extraction Tom ReamyChief Knowledge Architect KAPS Group Knowledge Architecture Professional Services http://www.kapsgroup.com

  2. Agenda • Introduction: Elements • Facets, Taxonomies, Software, People • 3 Environments • E-Commerce, Enterprise, Internet • Design Issues – Facets and Entities • Conclusion – Integrated Solution

  3. KAPS Group: General • Knowledge Architecture Professional Services • Virtual Company: Network of consultants – 12-15 • Partners – Inxight, FAST, etc. • Consulting, Strategy, Knowledge architecture audit • Taxonomies: Enterprise, Marketing, Insurance, etc. • Services: • Taxonomy development, consulting, customization • Technology Consulting – Search, CMS, Portals, etc. • Metadata standards and implementation • Knowledge Management: Collaboration, Expertise, e-learning • Applied Theory – Faceted taxonomies, complexity theory, natural categories

  4. Elements • Facet – orthogonal dimension of metadata • Entity / Noun Phrase – metadata value of a facet • Entity extraction – feeds facets, signature, ontologies • Taxonomy and categorization rules • Auto-categorization – aboutness, subject facets • People – tagging, evaluating tags, fine tune rules and taxonomy

  5. Essentials of Facets • Facets are not categories • Categories are what a document is about – limited number • Entities are contained within a document – any number • Facets are orthogonal – mutually exclusive – dimensions • An event is not a person is not a document is not a place. • Facets – variety – of units, of structure • Numerical range (price), Location – big to small • Alphabetical, Hierarchical – taxonomic • Facets are designed to be used in combination • Wine where color = red, price = excessive, location = Calirfornia, • And sentiment = snotty

  6. Advantages of Faceted Navigation • More intuitive – easy to guess what is behind each door • Simplicity of internal organization • 20 questions – we know and use • Dynamic selection of categories • Allow multiple perspectives • Ability to Handle Compound Subjects • Systematic Advantages – fewer elements • 4 facets of 10 nodes = 10,000 node taxonomy • Ability to Handle Compound Subjects • Flexible – can be combined with other navigation elements

  7. Essentials of TaxonomiesInternal Organization • Formal Taxonomy – parent – child relationship • Is-A-Kind-Of ---- Animal – Mammal – Zebra • Partonomy – Is-A-Part-Of ---- US-California-Oakland • Browse Classification – cluster of related concepts • Food and Dining – Catering – Restaurants • Taxonomies deal with complex, not compound • Conceptual relationships – category membership • Contextual relationships – Computers & Software • Taxonomies deal with semantics & documents • Multiple meanings and purposes • Essential attributes of documents are not single value

  8. Developing Facets: Tools and TechniquesSoftware Tools • Text Analytics – Taxonomy management, entity extraction, categorization, sentiment • Search – Integrated features, at index, Internet sources • CM – Enterprise environment, taggers and policy • Programmable Rules • Business and Subject matter expertise • Auto-populate variety of metadata – author, title, date, etc. • Relevance – best bets to weights and classes of documents • People – refine, monitor – it’s not automatic

  9. Developing Facets: Tools and TechniquesSoftware Tools – Auto-categorization • Auto-categorization • Training sets – Bayesian, Vector Machine • Terms – literal strings, stemming, dictionary of related terms • Rules – simple – position in text (Title, body, url) • Advanced – saved search queries (full search syntax) • NEAR, SENTENCE, PARAGRAPH • Boolean – X NEAR Y and Not-Z • Advanced Features • Facts / ontologies /Semantic Web – RDF + • Sentiment Analysis – positive, negative, neutral

  10. Developing Facets: Tools and TechniquesSoftware Tools – Entity Extraction • Dictionaries – variety of entities, coverage, specialty • Cost of update – service or in-house • Inxight – 50+ predefined entity types • Nstein – 800,000 people, 700,000 locations, 400,000 organizations • Rules • Capitalization, text – Mr., Inc. • Advanced – proximity and frequency of actions, associations • Need people to continually refine the rules • Entities and Categorization • Total number and pattern of entities = a type of aboutness of the document – Bar Code, Fingerprint

  11. Elements: People • Programmers, Librarians, Taxonomists, Metadata specialist • Integrate, design, develop rules, monitor activity & quality • Authors, Subject Matter Experts • Input into design (important facets), rules, activity meaning • Users – Web 2.0 • Feedback – quality and usability • Suggestions – missing terms, bad categorization & entity • Tags Clouds & folksonomy – for social networking features, not for information retrieval

  12. Three Environments • E-Commerce • Catalogs, small uniform collections of entities • Uniform behavior – buy this • Enterprise • More content, more types of content • Enterprise Tools – Search, ECM • Publishing Process – tagging, metadata standards • Internet • Wildly different amount and type of content, no taggers • General Purpose – Flickr, Yahoo • Vertical Portal – selected content, no taggers

  13. Three Environments: E-Commerce

  14. Three Environments: E-Commerce

  15. Enterprise Environment – When and how add metadata • Enterprise Content – different world than eCommerce • More Content, more kinds, more unstructured • Not a catalog to start – less metadata and structured content • Complexity -- not just content but variety of users and activities • Combination of human and automatic metadata – ECM • Software aided - suggestions, entities, ontologies • Enterprise – Question of Balance / strategy • More facets = more findability (up to a point) • Fewer facets = lower cost to tag documents • Issues • Not enough facets • Wrong set of facets – business not information • Ill-defined facets – too complex internal structure

  16. Facets and Taxonomies Enterprise Environment – Case One – Taxonomy, 7 facets • Taxonomy of Subjects / Disciplines: • Science > Marine Science > Marine microbiology > Marine toxins • Facets: • Organization > Division > Group • Clients > Federal > EPA • Instruments > Environmental Testing > Ocean Analysis > Vehicle • Facilities > Division > Location > Building X • Methods > Social > Population Study • Materials > Compounds > Chemicals • Content Type – Knowledge Asset > Proposals

  17. External Environment – Text Mining, Vertical Portals • Internet Content • Scale – impacts design and technology – speed of indexing • Limited control – Association of publishers to selection of content to none • Major subtypes – different rules – metadata and results • Complex queries and alerts • Terrorism taxonomy + geography + people + organizations • Text Mining • General or specific content and facets and categories • Dedicated tools or component of Portal – internal or external • Vertical Portal • Relatively homogenous content and users • General range of questions

  18. Internet Design • Subject Matter taxonomy – Business Topics • Finance > Currency > Exchange Rates • Facets • Location > Western World > United States • People – Alphabetical and/or Topical - Organization • Organization > Corporation > Car Manufacturing > Ford • Date – Absolute or range (1-1-01 to 1-1-08, last 30 days) • Publisher – Alphabetical and/or Topical – Organization • Content Type – list – newspapers, financial reports, etc.

  19. Integrated Facet ApplicationDesign Issues - General • What is the right combination of elements? • Faceted navigation, metadata, browse, search, categorized search results, file plan • What is the right balance of elements? • Dominant dimension or equal facets • Browse topics and filter by facet • When to combine search, topics, and facets? • Search first and then filter by topics / facet • Browse/facet front end with a search box

  20. Integrated Facet ApplicationDesign Issues - General • Homogeneity of Audience and Content • Model of the Domain – broad • How many facets do you need? • More facets and let users decide • Allow for customization – can’t define a single set • User Analysis – tasks, labeling, communities • Issue – labels that people use to describe their business and label that they use to find information • Match the structure to domain and task • Users can understand different structures

  21. Automatic Facets – Special Issues • Scale requires more automated solutions • More sophisticated rules • Rules to find and populate existing metadata • Variety of types of existing metadata – Publisher, title, date • Multiple implementation Standards – Last Name, First / First Name, Last • Issue of disambiguation: • Same person, different name – Henry Ford, Mr. Ford, Henry X. Ford • Same word, different entity – Ford and Ford • Number of entities and thresholds per results set / document • Usability, audience needs • Relevance Ranking – number of entities, rank of facets

  22. Putting it all together – Infrastructure Solution • Facets, Taxonomies, Software, People • Combine formal power with ability to support multiple user perspectives • Facet System – interdependent, map of domain • Entity extraction – feeds facets, signatures, ontologies • Taxonomy & Auto-categorization – aboutness, subject • People – tagging, evaluating tags, fine tune rules and taxonomy • The future is the combination of simple facets with rich taxonomies with complex semantics / ontologies

  23. Questions? Tom Reamytomr@kapsgroup.com KAPS Group Knowledge Architecture Professional Services http://www.kapsgroup.com

More Related