1 / 21

Редкие B- распады на установке ATLAS

Редкие B- распады на установке ATLAS. Н.В.Никитин (к Лекциям по B -физике) http://nuclphys.npi.msu.su/b/index.html 18.04.2005. 1. LHC – Large Hadron Collider – Большой адронный коллайдер строится в настоящее время в CERN е : pp - столкновения ( 14 ТэВ ).

brook
Download Presentation

Редкие B- распады на установке ATLAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Редкие B-распады на установке ATLAS Н.В.Никитин (к Лекциям по B-физике) http://nuclphys.npi.msu.su/b/index.html 18.04.2005 1

  2. LHC – Large Hadron Collider – Большой адронный коллайдер строится в настоящее время в CERNе: pp-столкновения (14 ТэВ). Планируемое начало работы: весна 2007 г. Четыре детектора: ATLAS, CMS – для поиска бозона Хиггса, суперсимметрии и других задач, в том числе исследовании свойств b-адронов; LHCb – оптимизирован под B-физику; ALICE – для исследования свойств КГП. Эксперимент LHC

  3. Мы сконцентрируемся на поиске редких В-распадов на установке ATLAS только потому, что группа МГУ активно принимает участие в данной работе. Следует иметь ввиду, что коллаборации CMS и, особенно, LHCb имеют не менее обширную программу по поиску редких распадов

  4. Introduction - I Physics: b → d, stransitions (FCNC) are forbidden at the tree levelin SMand occur at the lowest order throughone-loop-diagrams “penguin” and “box”. Main points forstudy: a) The good test of SM and its possible extensions -SUSY, Two Higgs-doublet, LR, Extra Dimensions; b) Information of the long-distance QCD effects; c) Determination of the │Vtd│and│Vts│; d) Some of rare decays as BG to other rare decays (for example: B0d → π0 µ+ µ- as BG to B0s →µ+ µ- γ). 2

  5. Introduction - II Branching Ratios Hierarchi in SM: Br(B0d→µ+ µ-) ~“a few” *10-10 Br(B0d→µ+ µ- γ) ~“a few”*10-10 Br(B0s →µ+ µ-) ~“a few”*10-9 Br(B0s →µ+ µ- γ) ~“a few” *10-8 Br(B0d → π0 µ+ µ- ) ~“a few”* 10-8 Br(B0d → ρ0 µ+ µ- ) ~“a few”* 10-7 Br(B0d → K µ+ µ-) = (4.8 ± 1.2) *10-7 (BaBar, Belle, ‘02) Br(B0s → φ µ+ µ-) ~“a few”*10-6 Br(B0d → K* µ+ µ-) = (1.17 ± 0.33) *10-6 (BaBar, Belle, ‘03) Br(B0d → K*γ) = (4.3 ± 0.4) * 10-5(CLEO, ‘93) 3

  6. Which new measurements can LHC make comparing with B-factories? a) The rare decays ofB0s – meson (B0s→φγ, B0s→φ µ+ µ- , B0s →µ+ µ- γ and B0s →µ+ µ-) and Λb - baryon; b) Differencial distributions for rare semileptonic B-meson decays (dimuon-mass spectra, forward-backward asymmetries) – very sensitive to the SM extensions; c) Branching fractions of rare muonic and rareradiative muonic B-meson decays – good sensitivity to the SM extensions. 4

  7. The basic theoretical description -I Effective Hamiltonian for b → d,s transition: Heff (b → q)~ GFV*tqVtb∑ Ci(µ) Oi (µ), includes the lowest EW-contributions and perturbative QCD corrections for Wilson coefficients Ci(µ) . µ - scale parameter ~ 5 GeV : separates SD (perturba- tive) and LD (nonperturbative) contributions of the strong interactions. SM NLO:A.Buras, M.Munz, PRD52, p.182, 1995 SM NNLO: C.Bobeth et al., JHEP 0404, 071, 2004 MSSM NNLO: C.Bobeth et al., hep-ph/0409293. 5

  8. The basic theoretical description -II Oi (µ) – set of the basic operators (specific for each model: SM, MSSM, LR and others); LD (nonperturbative) contribution of the strong inte- ractions are contained in the hadronic matrix elements: and are described in the terms of relativistic invariant function - transition formfactors. Need the nonperturbative methods (SR, QM, Lat). 6

  9. The accuracy of calculations Stability of the Wilson coefficients to the choice of mt and μ [mb/2, 2mb]: SM NLO: approximately 15%; SM NNLO: approximately 6% - 7%; MSSM NNLO: ≈30% depends from the parameters set. Accuracy of the nonperturbative calculations: depends on a method, but it’s not less, than 15%. For SM calculations – NLO, for MSSM – NNLO. 7

  10. Simulations of rare B-decays for ATLAS detector 8

  11. B0d,s →µ+µ- decays in ATLAS Points for study in ATLAS: Branching ratio - sensitive to the SUSY. Simulations: Full Inner detector simulation and reconstruction at low and nominal LHC luminosity 1) for TDR layout signal + background (ATLAS TDR 15, Vol.II, 1999) 2) for Initial layoutonly signal (ATL-COM-PHYS-2003-003 ). 3)signal + background in DC2. Results: Using SM teoretical predictions: Br(B0d,→µ+µ-) ≈ 1.5*10-10 and Br(B0d,→µ+µ-) ≈3.5*10-9 we obtaned the following sensitivities for ATLAS After3 year LHC work at L=1033 cm-2s-1 (30 fb-1) will be expected B0d :4 signal ev., B0s :27 signalev., 93 BG ev. common to both After1 year LHC work at L=1034 cm-2s-1 (100 fb-1) will be expected B0d :14 signalev., B0s :92 signal ev., 660 BG ev. common to both We expect the 3*1010 sensitivities at CL 95% for rare leptonic decays. 9

  12. B0d→K*(892)µ+µ- decay at ATLAS Points for study in ATLAS: Branching ratio - sensitive to the SUSY; Differencial distributions (dimuon-mass spectra, AFB) – very good sensitivity to the SUSY. Simulations: Full ATLAS Inner detector simulation and reconstruction at low luminosity (ATLAS TDR 15, Vol.II, 1999) using theoretical matrix element from paper D.Melikhov, N.Nikitin, S.Simula, PRD57, 6814, 1998. Results of simulation: After3 year LHC work at L=1033 cm-2s-1 (30 fb-1) will be expected ~2000 signal events at 290 BG events 10

  13. Bd®K*g Bs®fg Radiative penguins inATLAS Points for study in ATLAS: Branching for Bs®f g, polarization measurements and CP-violation effects. Preliminary results Non-optimized offline cuts, resolution (>100MeV/c2) could be improved. Using DC1 simulation tools: estimations including trigger and off-line selection cuts for 1year LHC work at L=2*1033cm–2s-1 (20fb-1) : Bs®f g: 3200 signal ev., S/√BG > 7; Bd®K*0 g:8500 signal ev., S/√BG > 5. B→K*0p0BG rejection under investigation combiningπ0/ γrejection cuts, kinematics and angle between B0 and K+ at K*rest frame cuts. 11

  14. Baryonic rare decay of Λb→ Λ µ+ µ- Points for study in ATLAS: Branching ratio - sensitive to the SUSY; FB asymmetry - very sensitive to the SUSY. Generation procedure: EvtGen used to generate events using amplitudes from works (C-H.Chen, C.Q.Geng, PRD64, 074001, 2001 ) and (T.M.Aliev et.al. , NPB649, p. 168-188 , 2003). Results of DC1-simulation: At Br(Λb→ Λ (p π-) µ+ µ-)~2·10-6 after1 year LHC work at L=2*1033 cm-2s-1 (20 fb-1) will be expected~1800eventsof the decay Λb→ Λ (p π-) µ+ µ-. 12

  15. Number of events Number of events B0s →µ+ µ- γ B0d →µ+ µ- γ B0s →µ+ µ- B0d →µ+ µ- B0d → π0 µ+ µ- B0d → π0 µ+ µ- Mµµ Mµµ B0d → π0 µ+ µ- as BG to B0d,s →µ+µ-γand B0d,s →µ+µ- decays |η(μ)| < 2.5, pT(μ) > 6 GeV, π0 → γ γ, pT(π0)< 4GeV The decayB0d →π0 µ+ µ-are essential background for the decay B0d,s →µ+ µ- (γ)at the particle level simulation. 16

  16. SUSY in rare B-decays at ATLAS detector

  17. SUSY: main motivations for study in rare B-decays I) Many kinds of heavy (m > 1 TeV) SUSY particles. II) Only lightestof these particles can be detected on LHC. III) Other SUSY-particles give the tiny contributions as virtual particles in SM processes.To find the information on such particles it is necessary to choose the decays : a) where SM contributions are suppressed as much as possible; b) QCD nonperturbative corrections well known; c) branchings can be measured in ATLAS. Rare B0d,s and Λbdecays are IDEAL CHOICE for that! 18

  18. tan β = 50 tan β = 60 Br(B0q→ µ+ µ-) x 108 Br(B0q→ µ+ µ-) x 108 SM SM 95% CL for ATLAS sensitivity MSSM for B0d,s→µ+µ- decays and ATLAS sensitivity C.Bobeth et al., PRD66, 074021, (2002) The B0d,s→µ+µ-barnchings as functions of charge Higgs boson mass MH for two choice the tan β. 19

  19. MSSM in B →K*(892) µ+µ- decay and ATLAS precision Sensitivity of AFB to the choice of the Wilson coefficients in one MSSM scenario: P.Cho, M.Misiak, D.Wyller, PRD54, p.3329, 1996. Three intervals for variable q2 /M2B. If in the first interval the negative average asymmetry will be measured, it will be convincing demonstration of a SM exten- sions reality. 20

More Related