1 / 37

Introduction

Introduction. Many data structures are linear unique first component unique last component other components have unique predecessor and successor hierarchical non-linear each component may have several successors. Trees.

bruce-lloyd
Download Presentation

Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction • Many data structures are linear • unique first component • unique last component • other components have unique predecessor and successor • hierarchical • non-linear • each component may have several successors trees.ppt

  2. Trees • Hierarchy in which each component except top is immediately beneath one other component • root - single component at the top of a tree • leaves - component having no successors • nodes - trees components • parent - node immediately above(predecessor) • children - nodes directly below it(successor) • ancestor • descendant trees.ppt

  3. General tree • An empty node is a tree • A single node is a tree • The structure formed by taking a node R and one or more separate trees and making R the parent of all roots of the trees is a tree trees.ppt

  4. More tree terminology • Level of a node • level of root is 1 • level of any other node is one more than its parent • height or depth of a tree • maximum of the levels of its leaves trees.ppt

  5. Binary Tree • A node in a binary tree can have at most two children • the two children of a node have special names: the left child and the right child • every node of a binary tree has 0, 1, or 2 children trees.ppt

  6. A - root node C right child B left child Leaf nodes trees.ppt

  7. D E F G H I J trees.ppt

  8. A A B B If the two trees are general trees, they are different drawings of the same tree. As binary trees, they are different trees. trees.ppt

  9. Binary Search Tree • Specialized binary tree • no two nodes in the tree contain the same data value • data is from a data type in which less than or greater than is defined • the data value of every node in the tree is • greater than any data value in its left subtree • less than any data value in its right subtree trees.ppt

  10. 5 7 8 2 5 8 7 9 0 0 6 9 6 2 Examples of binary search trees trees.ppt

  11. Searching a binary search tree probePtr = binSrchTree.Root(); while(probePtr != NULL && Data(probePtr) != key) if (key < Data(probePtr) probePtr = Lchild(probePtr); else probePtr = Rchild(probePtr); trees.ppt

  12. Efficiency • Maximum number of loop iterations equals the height of the tree • degenerate binary tree - every node except the single leaf node has exactly one child • linear search • full binary tree • balanced - most nodes have two children • O(log2N) trees.ppt

  13. TreeNode struct TreeNode { char data; NodePtr lchild; NodePtr rchild; }; trees.ppt

  14. struct TreeNode; typedef TreeNode* NodePtr; class TreeType { public: TreeType(); // creates empty tree ~TreeType(); // destructor TreeType(const TreeType& originalTree); bool IsEmpty() const; int NumberOfNodes() const; void RetrieveItem(ItemType& item, bool& found); void InsertItem(ItemType item); void DeleteItem(ItemType item); void PrintTree() const; private: NodePtr rootPtr; }; trees.ppt

  15. TreeType::TreeType() { rootPtr = NULL; } TreeType::~TreeType() { Destroy(rootPtr); } void Destroy(NodePtr& tree) { if (tree != NULL) { Destroy(tree->lchild); Destroy(tree->rchild); delete tree; } } bool TreeType::IsEmpty() const { return (rootPtr == NULL); } trees.ppt

  16. Inserting Values • Apply modified binary search algorithm • search algorithm terminates at a leaf - insertion point • faster than sorted vectors • additional memory for links trees.ppt

  17. void FindNode (NodePtr tree,ItemType& item, NodePtr& nodePtr, NodePtr& parentPtr) { nodePtr = tree; parentPtr = NULL; Boolean found = FALSE; while (nodePtr != NULL && !found) { if (item < nodePtr->data) { parentPtr = nodePtr; nodePtr = nodePtr->lchild; } else if (item > nodePtr->data) { parentPtr = nodePtr; nodePtr = nodePtr->rchild; } else found = TRUE; } } trees.ppt

  18. void TreeType::InsertItem(ItemType item) { NodePtr newNode; NodePtr nodePtr; NodePtr parentPtr; newNode = new TreeNode; newNode->data = item; newNode->rchild = NULL; newNode ->lchild = NULL; FindNode(root,item,nodePtr,parentPtr); if (parentPtr == NULL) // insert as root root = newNode; else if (item < parentPtr->data) parentPtr->lchild = newNode; else parentPtr ->rchild = newNode; } trees.ppt

  19. int TreeType::NumberOfNodes() const { return CountNodes(rootPtr); } int CountNodes(NodePtr tree) { if (tree == NULL) return 0; else return CountNodes(tree->lchild) + CountNodes(tree->rchild) + 1; } trees.ppt

  20. Binary Tree Traversal • Tree traversal algorithm - algorithm for processing or visiting every node • Inorder traversal • visit all node is the left subtree of R,visit node R,visit all nodes in right subtree of R • Postorder traversal • visit all node is the left subtree of R, visit all nodes in right subtree of R, visit node R, • Preorder traversal • visit node R, visit all node is the left subtree of R,visit all nodes in right subtree of R trees.ppt

  21. inorder void InorderTraverse(/* in */ NodePtr ptr) { if (ptr != NULL) { InOrderTraverse(LChild(ptr)); Visit(ptr); InOrderTraverse(Rchild(ptr)); } } trees.ppt

  22. Inorder:0 3 5 6 7 8 9 5 8 3 7 9 0 6 trees.ppt

  23. Preorder-visit node before subtrees void PreorderTraverse(/* in */ NodePtr ptr) { if (ptr != NULL) { Visit(ptr); PreOrderTraverse(LChild(ptr)); PreOrderTraverse(Rchild(ptr)); } } trees.ppt

  24. Preorder: 5 3 0 8 7 6 9 5 8 3 7 9 0 6 trees.ppt

  25. Postorder-visit node after subtrees void PostorderTraverse(/* in */ NodePtr ptr) { if (ptr != NULL) { PostOrderTraverse(LChild(ptr)); PostOrderTraverse(Rchild(ptr)); Visit(ptr); } } trees.ppt

  26. Postorder: 0 3 6 7 9 8 5 5 8 3 7 9 0 6 trees.ppt

  27. Recursive versions: void TreeType::InsertItem(ItemType item) { Insert(rootPtr,item); } void Insert(NodePtr& tree,ItemType item) { if (tree == NULL) { // insertion point found tree = new TreeNode; tree->rchild = NULL; tree->lchild = NULL; tree->data = item; } else if (item < tree->data) Insert(tree->lchild,item); // insert in left subtree else Insert(tree->rchild,item);// insert in right subtree } trees.ppt

  28. void TreeType::RetrieveItem(NodePtr tree,ItemType& item, bool& found) { Retrieve(root,item,found); } void Retrieve(NodePtr tree,ItemType& item, bool& found) { if (tree == NULL) found = FALSE; else if (item < tree->data) Retrieve(tree->lchild,item,found); else if (item > tree->data) Retrieve(tree->rchild,item,found); else { item = tree->data; found = TRUE; } } trees.ppt

  29. void TreeType::TreeType (const TreeType& original Tree) { CopyTree(root,originalTree.root); } void CopyTree(NodePtr& copy,const NodeType originalTree) { if (originalTree == NULL) copy = NULL; else { copy = new TreeNode; copy -> info = originalTree->Info; CopyTree(copy->left,originalTree->left); CopyTree(copy->right,originalTree->right); } } trees.ppt

  30. Binary Expression Tree 1. Each leaf node contains a single operand, and each nonleaf node contains a single operator 2. The left and right subtrees of an operator node represent the subexpressions that must be evaluated before applying the operator at the root of the subtree trees.ppt

  31. Each subtree represents an expression • evaluate both subtrees before performing the operation at the root trees.ppt

  32. Examples of binary expression trees + * 6 5 4 3 6 + 5 4*3 trees.ppt

  33. + / + 8 2 3 * 4 6 ((6*4)+3) + (8/2))infix: 6 * 4 + 3 + 8/2prefix: + + * 6 4 3 / 8 2postfix: 6 4 * 3 + 8 2 / + trees.ppt

  34. Infix notation • inorder transversal • 5 + 3 • Prefix notation • preorder transversal • + 6 2 • consecutive operations performed right to left • postfix notation - reverse Polish notation(RPN) • postorder transversal • 6 2 * • consecutive operations performed left to right trees.ppt

  35. RPN expression evaluation WHILE more tokens exist in RPN expression { thisToken = next token in RPN expression; IF thisToken is an operand THEN Push thisToken onto operand stack; ELSE { Pop the two top values from operand stack; Using these two values as operands, perform operation; Push the result onto operand stack; } trees.ppt

  36. RPN evaluation of :6 4 * 3 + 8 2 / + Operand stack 6 6 4 24 24 3 27 27 8 27 8 2 27 4 31 trees.ppt

  37. semantics • Mathematics define precedence rules • programming languages • some have defined precedence rules, others use left to right or right to left • most have associativity rules defined • in most parentheses override defaults • postfix and prefix notation • no precedence rules or associative rules needed trees.ppt

More Related