1 / 24

Úměrnosti

Úměrnosti. Přímá úměrnost. Rovnice a graf přímé úměrnosti. Přímá úměrnost (úměra). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Určete, zda se jedná o přímou úměru a své tvrzení zdůvodněte.

Download Presentation

Úměrnosti

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Úměrnosti Přímá úměrnost. Rovnice a graf přímé úměrnosti.

  2. Přímá úměrnost (úměra). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Určete, zda se jedná o přímou úměru a své tvrzení zdůvodněte. Ano. Jde o přímou úměru dráhy a času. Průměrná rychlost 60 km/h znamená, že automobil ujede 60 kilometrů za jednu hodinu, jinými slovy 60 kilometrů každou hodinu. Za jednu hodinu tedy 60 kilometrů, za dvě hodiny dvakrát více, za tři hodiny třikrát více, atd. Z toho tedy vyplývá, že kolikrát se zvětší jedna veličina, tolikrát se zvětší i veličina druhá. Sestavte tabulku této přímé úměry.

  3. Přímá úměrnost (úměra) - opakování. Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Zopakujme si, co již o přímé úměrnosti víme: Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina. V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Takový vztah mezi dvěmaveličinami se nazývápřímá úměrnost. Říkáme, že veličiny jsou přímo úměrné.

  4. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase. … a 1 dílek na ose dráhy odpovídá 60 kilometrům Nejdříve si sestrojíme vhodně volenou kartézskou soustavu souřadnic. … 1 dílek na ose času odpovídá 1 hodině … Jen v kladných hodnotách …

  5. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase. Poté již do grafu postupně sestrojíme příslušné body.

  6. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase.

  7. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase.

  8. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase.

  9. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase.

  10. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase. Co je grafem naší přímé úměry? Kdy to nebudou jen tyto body? Jsou to jen sestrojené body?

  11. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase. Grafem přímé úměry, která popisuje závislost ujeté dráhy na čase při průměrné rychlosti 60 km/h je polopřímka, procházející „našimi body“?

  12. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase. Grafem přímé úměrnosti je obecně přímka procházející počátkem soustavy souřadnic (pokud je definičním oborem množina reálných čísel). Avšak vzhledem k definičnímu oboru pracujeme většinou pouze s podmnožinami přímky, tj. buď s polopřímkou nebo s úsečkou.Pokud je však definičním oborem množina přirozených čísel, pak grafem závislosti je množina izolovaných bodů ležících na přímce (event. na polopřímce).

  13. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Ze zadaných a vypočtených hodnot v tabulce sestav graf závislosti dráhy na čase. Existuje nějaký vztah, vzorec, rovnice, která nám pomůže všechny body odpovídající naší přímé úměře, všechny uspořádané dvojice času a k němu odpovídající dráhy „najít“, vypočítat? Ano existuje. A my si tuto rovnici společně odvodíme. Jak jsme si tedy vyvodili, grafem přímé úměry je polopřímka, která znázorňuje graficky množinu všech bodů, které odpovídají dané přímé úměře.

  14. Graf přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Podívejte se na tabulku a pokuste se najít vztah mezi odpovídajícími si hodnotami času a dráhy. 60 : 1 = 60 120 : 2 = 60 180 : 3 = 60 240 : 4 = 60 Konstanta. V našem případě číslo 60, tedy průměrná rychlost automobilu 60 km/h. 300 : 5 = 60 360 : 6 = 60

  15. Rovnice přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Podívejte se na tabulku a pokuste se najít vztah mezi odpovídajícími si hodnotami času a dráhy. 60 : 1 = 60 120 : 2 = 60 180 : 3 = 60 240 : 4 = 60 Konstanta. V našem případě číslo 60, tedy průměrná rychlost automobilu 60 km/h. 300 : 5 = 60 360 : 6 = 60 s : t = v Dráha. s = v . t Čas.

  16. Obecná rovnice přímé úměrnosti (úměry). Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. x y Podívejte se na tabulku a pokuste se najít vztah mezi odpovídajícími si hodnotami času a dráhy. y 60 : 1 = 60 Urči pomocí rovnice a následně i grafu další odpovídající hodnoty. Např. jakou dráhu ujede automobil za 1,5 hodiny, za jak dlouho ujede 330 km, atd. 120 : 2 = 60 180 : 3 = 60 240 : 4 = 60 Rovnici naší přímé úměrnosti si nyní zobecníme. 300 : 5 = 60 360 : 6 = 60 y : x = k s : t = v s = v . t y = k . x x

  17. Přímá úměrnost (úměra) – příklady - 1. Příklad: Jeden rohlík stojí 2,- Kč. Kolik korun budou stát 2, 3, …, 8 rohlíků? Sestav tabulku přímé úměry. Urči rovnici přímé úměry. Sestroj graf přímé úměry. 2 : 1 = 2 4 : 2 = 2 6 : 3 = 2 8 : 4 = 2 … k = 2 y = k . x y = 2 . x

  18. Příklady k procvičení - 2 Urči rovnici přímé úměry, doplň tabulku a sestroj graf dané úměry (v R).

  19. Příklady k procvičení - 2 Urči rovnici přímé úměry, doplň tabulku a sestroj graf dané úměry (v R). Konstanta k:36 : 12 = 3k = 3 Rovnice přímé úměry:y = k . x y = 3x

  20. Příklady k procvičení - 2 Urči rovnici přímé úměry, doplň tabulku a sestroj graf dané úměry (v R). Graf: Konstanta k:36 : 12 = 3k = 3 Rovnice přímé úměry:y = k . x y = 3.x

  21. Příklady k procvičení - 3 Urči rovnici přímé úměry, doplň tabulku a sestroj graf dané úměry (v R+).

  22. Příklady k procvičení - 3 Urči rovnici přímé úměry, doplň tabulku a sestroj graf dané úměry (v R+). Konstanta k:10 : 20 = 0,5k = 0,5 Rovnice přímé úměry:y = k . x y = 0,5 . x

  23. Příklady k procvičení - 3 Urči rovnici přímé úměry, doplň tabulku a sestroj graf dané úměry (v R+). Graf: Konstanta k:10 : 20 = 0,5k = 0,5 Rovnice přímé úměry:y = k . x y = 0,5 . x

  24. Přímá úměrnost (úměra) - závěr. Příklad: Automobil jede průměrnou rychlostí 60 km/h. Urči kolik kilometrů ujede od chvíle, kdy začneme měřit čas za 1, 2, 3, 4, 5, 6 hodin. Shrňme si, co již o přímé úměrnosti víme: Kolikrát se zvětší (zmenší) jedna veličina, tolikrát se zvětší (zmenší) druhá veličina. V jakém poměru se zvětší (zmenší) jedna veličina, v takovém poměru se zvětší (zmenší) druhá veličina. Takový vztah mezi dvěmaveličinami se nazývápřímá úměrnost. Říkáme, že veličiny jsou přímo úměrné. Rovnice přímé úměry … y = k . x Grafem přímé úměrnosti je obecně přímka procházející počátkem soustavy souřadnic (pokud je definičním oborem množina reálných čísel). Avšak vzhledem k definičnímu oboru pracujeme většinou pouze s podmnožinami přímky, tj. buď s polopřímkou nebo s úsečkou. Pokud je však definičním oborem množina přirozených čísel, pak grafem závislosti je množina izolovaných bodů ležících na přímce (event. na polopřímce).

More Related