260 likes | 275 Views
This study investigates the tunneling behavior of multiple-quasiparticles between fractional quantum Hall edges. It explores the relevance of neutral mode dynamics and the behavior of shot noise in the Jain sequence. The results highlight the importance of multiple-quasiparticle tunneling at extremely low temperatures.
E N D
D. Ferraro N. Magnoli M. Merlo A. Braggio Tunneling of multiple-quasiparticles between fractional quantum Hall edges Maura Sassetti Università di Genova
Outline LL exponents in the Laughlin series (universal vs non-universal) Measurements in p.c. for the Jain sequence Tunneling of multiple-quasiparticles current and noise
Tsui, Stormer, Gossard Quantum Hall effect incompressible fluid gapped bulkexcitations Von Klitzing, Dorda, Pepper PRL80 ; Tsui, Stormer, Gossard PRL82 , Laughlin PRL 83
Hall liquid FQH edge states boundary restriction of the bulk theory chiral excitations with no gap low-energy sector of the incompressible fluid Wen, PRL 90, PRB90,91; Cappelli, Dunne, Trugenberger, Zemba Nucl. Phys. 93 Lopez, Fradkin PRB 99 ....
Laughlin series quasiparticle excitations charge statistics Laughlin PRL 83; Arovas, Schrieffer, Wilczek PRL 84.
chiral Luttinger liquids fractional charge fractional statistics dynamics (LL exponents) Wen 90
V transport through a point contact
V V
Moon, Yi, Kane, Fisher PRL 93 (MC simulations) Yue, Matveev, Glazman PRB 94 (weak interaction expansion ) Fendley, Ludwig, Saleur PRL 95, 96 (thermodinamic Bethe Ansatz) Weiss, Egger, Sassetti PRB 95 (real time P.I. ) Aristov, Woelfle EPL 08 (fermionic representation, RG equation) weak backscattering mode dynamics general solutions at any order in
Chung, Heiblum, Umansky PRL 03 extremely weak backscattering negative slope theory non-universal power law exponent ! Other experimental deviations Chang et al., PRL 96; Grayson et al. PRL 98; Glattli et al. Physica E 00; Chang et al. PRL 01; Grayson et al. PRL 01; Hilke PRL 01, Roddaro PRL03, 04 ,,,,,
several proposals e-ph coupling (Heinonen & Eggert PRL 96, Rosenow & Halperin PRL 02) e-e interaction(Mandal & Jain PRL 02; Papa & Mac Donald PRL 05) edge reconstruction (Mac Donald et al. J. Phys 93, Chamon & Wen PRB 94, Wan et al. PRL 02,Yang PRL 03) local filling factor (Sandler et al PRB 98, Roddaro et al. PRL 05, Lal EPL 07) non universal !
shot noise Chung et al PRL03 De-Picciotto et al. Nature 97 weak backscattering Poissonian process for Kane & Fisher, PRL 94; Fendley, Ludwig, Saleur PRL 95 rubust! De-Picciotto et al. Nature 97 Saminadayar et al. PRL 97 Reznikov et al. Nature 99 ...
V Tunneling in the Jain sequence
Chung, Heiblum, Umansky PRL 03 extremely weak backscattering positive slope change in the power-law scaling
Chung et al PRL03 noise quasiparticle charge
Hall liquid charged mode neutral mode dynamical topological Lopez, Fradkin PRB 99 Chamon, Fradkin, Lopez PRL07 Lee, Wen 98 Kane Fisher PRB 95
excitations quasiparticle agglomerate electrons charge statistics Haldane PRL 83, Halperin PRL 84, Jain PRL 89
statistics charge
tunneling processes most relevant operators for (scaling dimension) Ferraro Braggio, Merlo Magnoli, Sassetti arXiv:08053435; similar to: Wen; Kane, Fisher PRB 95 p-agglomerate single quasiparticle
weak backscattering V up down only charge modes in the dynamics charge and neutral modes in the dynamics always only charge mode in the dynamics
Chung et al. PRL 03 positive slope relevance of p-agglomerate
fitting of the experimental data Ferraro Braggio, Merlo Magnoli, Sassetti arXiv:08053435
Conclusions tunneling experiments in the Jain sequence relevance of neutral mode dynamics at low temperatures relevance of multiple-quasiparticle tunneling at extremely low temperatures