1 / 18

Detector Response Measurements

Dr. Richard Young, VP of Marketing & Science at Optronic Laboratories, Inc., presents an outline of detector types, response uniformity, and measurements in this informative presentation.

brucef
Download Presentation

Detector Response Measurements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Detector Response Measurements Presented by Dr. Richard Young VP of Marketing & Science Optronic Laboratories, Inc.

  2. Outline of Presentation • Detector Types • Response Uniformity • Measurements • Irradiance Response • By substitution • Power Response • By substitution • By beam switching

  3. Detector Types Detectors generally fall into two main types Photodiodes Photoconductors

  4. Detector Types • Photodiodes • Can operate unbiased or biased • Are generally suited to DC amplification • Have low noise • Generally operate in the UV to near IR • Photoconductors • Must be biased to operate • Are usually operated in AC mode • Have low sensitivity and high noise • Generally operate in the visible to far IR

  5. Response Uniformity Photodiodes often have uniform responsivity Note: the z-axis scale is in 0.1% increments

  6. Response Uniformity Photoconductors often have non-uniform responsivity Note: the y-axis scale is in 10% increments

  7. Response Uniformity For the silicon photodiode, the signal is virtually the same regardless where on the chip the light spot falls. Signal

  8. Response Uniformity For the PbS photoconductor, the signal is very different, depending where on the chip the light spot falls. Signal

  9. Power is measured correctly at all locations on the chip Power is measured correctly at all spot sizes Provided the spot lies within the detector area The spot location on the chip and spot size that was used in the detector calibration must be reproduced exactly for correct measurements Power Response If the detectors were calibrated, we could measure the power [W] in the spot, but… Si Detector PbS Detector

  10. Irradiance Response If the spot is larger than the detector area, the detector measures Power Area = Irradiance (watt/cm2)

  11. Irradiance Response Provided the intensity within the spot is uniform, the PbS detector also gives correct irradiance results and is not sensitive to alignment or spot size.

  12. Then the signal on the test detector gives its irradiance response [(A or V)/(W/cm2)] First, the irradiance [W/cm2] is measured with the calibrated detector Test Detector Calibrated Detector Irradiance Response Detector calibration is usually done by direct substitution. For irradiance response calibration, the detector is over-filled with a uniform beam

  13. First, the power [W] is measured with the calibrated detector Then the signal on the test detector gives its power response [(A or V)/W] Calibrated Detector Test Detector Power Response Power reponse calibration is also usually done by direct substitution. For power response calibration, the detector is under-filled with a small spot

  14. Power Response • However, if the detector is non-uniform, it needs to be positioned correctly each time. • Often the test detector and the calibrated detector require different holding fixtures. • And changing these, with alignment adjustments, every time you need to calibrate can be time consuming. • An accessory with a beam switch can speed up the calibration/measurement cycle considerably.

  15. Power Response Calibrated Detector Detector measurements with a beam switch requires one extra step. First, the calibration as normal… …then the beam is switched and the calibrated (or other) detector is placed at the switched position…

  16. Power Response Measurement of the detector response in THIS position is called a transfer calibration. Calibrated Detector

  17. Power Response Once this is done, the detector remains in this position. Calibration is achieved by applying the transferred values. Calibrated Detector

  18. Power Response Test Detector Measurement is the same as before with the mirror switched back. Calibrated Detector

More Related