1 / 19

Ch:7 Trigonometric Identities and Equations

Ch:7 Trigonometric Identities and Equations . By: Linitha and Hina . 7.1 Exploring Equivalent Trigonometric Functions . Related functions with and 2 Cos ( – θ )= - cos θ Sin ( – θ ) = sin θ Tan ( – θ ) = - tan θ Cos ( + θ ) = - cos θ

bruis
Download Presentation

Ch:7 Trigonometric Identities and Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch:7 Trigonometric Identities and Equations By: Linitha and Hina

  2. 7.1 Exploring Equivalent Trigonometric Functions • Related functions with and 2 • Cos ( – θ)= - cos θ • Sin ( – θ) = sin θ • Tan ( – θ) = - tan θ • Cos ( + θ) = - cos θ • Sin ( +θ) = - sin θ • Tan ( +θ) = tan θ • Cos (2 + θ)= cos θ • Sin(2 + θ)= -sin θ • tan(2 + θ)= -tan θ

  3. 7.2 Compound Angle Formulas • Addition formulas • Sin (a+b) = sin a cos a + cos a sin b • Cos (a+b) = cos a cos b – sin a sinb • Tan (a+b) = tan a +tan b / 1- tan a tan b • Subtraction formulas • Sin (a-b)= sin a cos b – cos a sin b • Cos (a-b) = cos a cos b +sin a sin b • Tan (a-b) = tan a – tan b/ 1 + tan a tan b

  4. 7.3 Double Angle Formulas • Double angle formula for sine • Sin 2θ = 2 sin θ cos θ • Double angle formulas for cosine • Cos 2θ = cos2 θ – sin2θ • Cos 2θ = 2 cos2 θ – 1 • Cos 2θ = 1-2 sin2 θ • Double angle formulas for tangent • Tan 2θ = 2 tan θ / 1- tan2 θ

  5. 7.4 Proving Trigonometric Identities Reciprocal identities • Csc x= 1/ sin x • Sec x= 1/cos x • Cot x = 1/tan x Quotient identities • Tan x = sinx / cos x • Cot x= cos x/ sinx Pythagorean identities • Sin 2 x + cos 2 x = 1 • 1 + tan 2 x = sec 2 x • 1+ cot x = csc 2 x Double angle formulas • Sin 2x = 2 sinx cosx • Cos 2x = cos2x– sin2x • Cos 2x = 2 cos2x – 1 • Cos 2x = 1-2 sin2x • Tan2x = 2 tan x/ 1- tan2x Addition /subtraction formulas • Sin (x+y) = sin x cos y + cos x sin y • Cos (x+y) = cos x cos y – sin x sin y • Tan (x+y) = tan x +tan y / 1- tan x tan y • Subtraction formulas • Sin (x-y)= sin x cos y – cos x sin y • Cos (x-y) = cos x cos y +sin x sin y • Tan (x-y) = tan x – tan y/ 1 + tan x tan y

  6. 7.5 Solving Linear Trigonometric Equations • Special Triangles • CAST Rule • Calculator (only when not in special triangle) • Period of the function so the number of solutions are known in the specified interval

  7. 7.6 Solving Quadratic Trigonometric Equations • Factoring • Quadratic Formula Sin2 x – sinx = 2 Sin2 x – sinx – 2 = 0 ( sinx – 2) (sinx + 1) = 0 Sinx = 2 or sinx = -1 No solution x = 3 2 (0, -1)

  8. Question Time!!!

  9. 1. Use the co function identities to write an expression that is equivalent to each of the following expressions. • Sin 6 • Tan 3 8 • Cos 5 18

  10. 2. State whether each of the following are true or false • Cos (θ +2 )= cos θ • Sin ( - θ) = -sin θ • Cot ( + θ)= tan θ 2

  11. 3. Determine the exact value of • A) Cos (15 °) B) tan(-5 /12) • 4. simplify each expression • A) cos 7 /12 cos 5 /12 + sin 7 /12 sin 5 /12 • B) sin 2x cos x – cos 2x sin x

  12. 5. Simplify each of the following expressions and then evaluate • A) 2 sin /8 cos /8 • B) 2 tan /6 / 1 – tan 2 /6

  13. 6. If cosθ = -2/3 and 0 < θ < 2pie , determine the value of cos 2θ and sin 2θ • 7. Develop a formula for sin x/2

  14. 8. prove that sin 2x / 1 + cos2x = tan x • 9. prove that sin x + sin 2x = sin 3x is not an idenitity • 10. prove that cos ( /2 + x) = - sin x

  15. 11. Cos (x - y)/ cos (x + y) = 1 + tan x tan y/ 1- tan x tan y • 12.Prove that tan 2x – 2 tan 2x sin2 x = sin 2x • 13. prove that 1 + tan x / 1 + cot x = 1- tan x /cot x - 1

  16. 14. Determine all solutions in the specified interval for the following equation: 0 < x < 2 • 2sinx + 1 = 0

  17. 15. Use a calculator to determine the solutions for the following equation on the interval 0 < x < 2 • 2 – 2cotx = 0

  18. 16. Solve the equation for x in the interval 0 < x < 2 • 2sin2x – 3sinx + 1 = 0

  19. 17. Use a trigonometric identity to create a quadratic equation. Then solve the equation for x in the interval [0, 2 ] • 2sec2x – 3 + tanx = 0

More Related