1 / 18

Topological G2 Strings

Topological G2 Strings. Jan de Boer, Amsterdam M-theory in the city. Based on: hep-th/0506211, JdB, Asad Naqvi and Assaf Shomer hep-th/0610080, JdB, Paul de Medeiros, Sheer El-Showk and Annamaria Sinkovics work in progress. Motivation.

brygid
Download Presentation

Topological G2 Strings

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Topological G2 Strings Jan de Boer, Amsterdam M-theory in the city Based on: hep-th/0506211, JdB, Asad Naqvi and Assaf Shomer hep-th/0610080, JdB, Paul de Medeiros, Sheer El-Showk and Annamaria Sinkovics work in progress

  2. Motivation • M-Theory on G2 manifolds can give rise to realistic N=1 physics in four dimensions • Attempt to unify topological string theories: topological M-theory? • Understand terms in the low-energy effective action in three dimensions • Understand the relation between 3d and 4d physics: c-map • Unify branes and world-sheet instantons • Better understanding of S-duality

  3. 2 2 R [ ( ) ( ) ] d d µ S G X B X D X D X ¹ º + x = + ¡ ¹ º ¹ º World-sheet approach General N=1 supersymmetric σ-model: Has an N=1 superconformal algebra on the world-sheet with generators G,T Generically, there is no spacetime supersymmetry

  4. ¹ Ã Ã A @ ¹ ¹ A 0 k 1 ! = = ¹ ¹ : : : k 1 : : : ! ¹ ¹ k 1 : : : Space-time supersymmetry (no fluxes) Covariantly constant spinors Special holonomy Covariantly constant differential forms Extra generators in the world-sheet chiral algebra: obeys (plus superpartner)

  5. l h f Á d f f Á H i 1 2 3 1 4 5 1 6 7 2 4 6 t t t t Á ¤ a v e a c o v a r a n y c o n s a n r e e - o r m a n o u r - o r m + + + ^ ^ ^ ^ ^ ^ ^ ^ e e e e e e e e e e e e » 2 5 7 3 4 7 3 5 6 ¡ ¡ ¡ ^ ^ ^ ^ ^ ^ e e e e e e e e e Á ¤ Á G2 manifolds These six generators form a non-linear algebra, the G2 algebra

  6. j i ( ) d d b h h h h h h P h b h b d h T i i U i B P S i i i 1 t t t t t t t t t r m a r e s a r e e n o e y w e w e g e r e s n o c u r r e n u e r e s a o u n a h h f l f I f I h l T i i i t t r ; , e r e a r e e r e o r e o n y o u r y p e s o c r a p r m a r e s : h f h l d l X I d h l l h l i i i i i i i t t t t t t t t t t t w r e s r e s s - e n s o r o e r c r c a s n g m o e 1 2 6 2 3 n c a e s w e n m u p e s a r e s o r o r o n g : j i j i j i j i 0 0 0 , ; 1 0 ; 5 1 0 ; 5 2 ; d h h h l f l h ¢ i t t t t + a n e o a c o n o r m a w e g p = I h 1 1 8 0 + + r h h I ¸ + I r 8

  7. 2 H ¡ ¯ h D Q G Q 0 t e n e e n = = B R S T B R S T , Twisting for Calabi-Yau:

  8. = 2 h h I i  t t t t t t t t t t f @ h l k d d b k d I J u r n s o u a e i i s a i v e r i e x o p e r i a o r a g e n e r a e s t t t  e n w s n g s e a n g a a c g r o u n = = = , 2 2 h i h ( ) ( ) i O O O O   0 ( ) d d l d l ° R t t t t t e 1 e ( ) = a a m o n g r o u n s a e r e a e o s p e c r a o w d d h f d h i h ! i I G U 1 1 i t t t t 1 t t t n w s e n u n w s e : : : : : : c a r g e o r  a n n e c a s e e r e s n o s y m m e r y 2 , ,

  9. 1 7 ( ) ( ) h h d h f G i i i t t z a s w e g s a n u s n g e u s o n h f l W ¯ l i b f h b l f D V i i i i t t t t t t e c a n e r e o r e s p e n e c o r r e a o r s a s e o r e w s u a e n s e r o n o 1 0 ; 5 R R # H l P Q G l f l l h l b H i i t t t t " # r o p o s a : H H H H r u e s a c s a s o o w s = o n e e r s p a c e : ( ) ( ) ( ) G G G + = 1 2 ¡ z z z 3 6 1 = 0 ¤ ¤ ¤ ¤ ; ; ; ; 1 2 1 0 0

  10. RESULTS • BRST cohomology consists precisely of the chiral primaries • Three-point functions exist and are independent of the insertion points of the operators • Evidence that the path integral localizes on constant maps • Evidence that the theory also exists at higher genus • BRST operator turns out to have a nice geometrical interpretation

  11. ( ) l l h R G S O 7 t t ½ e c a a 2 Dolbeault complex for G2 manifolds

  12. l F o r e x a m p e : ¹ ( ) ± Ã Ã Á @ ± Q º º ½ 0 0 g g = , = [ ] R L ¹ º ¹ º ½ ¾ h k f d l i i i i t t t s e n o w n e q u a o n o r m e r c m o u 3 ( ) h d h T H M i i t t e s e a r e n o n e - o - o n e c o r r e s p o n e n c e w . h f T i i i t t r e e - p o n u n c o n s g v e a m a p 3 3 3 ( ) ( ) ( ) H M H M H M R £ £ ¡ ! . ? G i i i t t t t e o m e r c n e r p r e a o n

  13. i ( ) h l h h T F i i t t t t t t e r e e x s s a p r e p o e n a s u c a 3 @ h i ( ) O O O F t / k i j k i j @ @ @ : t t t h w e r e @ F 7 i R R Á Á t ¤ = = i i @ A B ; 3 t i l l h I i i t t t t t t t e x a c y a s n s p e c a g e o m e r y u r n s o u a . ( ) l b h h f l F H i i i i i t t t t t s e x a c y g v e n y e c n u n c o n a R ( ) Á Á F t ^ ¤ =

  14. = = ¹ ¹ 1 1 3 2 3 ( ) ( ) ( ) F C Y S F F F F £ + + » A A B B • The topological G2 string computes all quantities that appear in the low energy effective action of M-theory compactified on a G2-manifold: the Kähler potential and gauge couplings. • We can compute the genus one partition function in the topological G2 string and compare to a one-loop calculation done using the Hitchin functional. Fails for ordinary Hitchin, may work for generalized Hitchin (work in progress). • Spin(7) does not seem to work at all.

  15. F G F F 2 B A Kodaira Spencer Theory Holomorphic Chern-Simons Theory 6d Hitchin functional Kähler Gravity Chern-Simons Theory ?? ?? Open Topological G2 7d Hitchin functional

  16. R ( ) Á S C S A ^ ¤ = 3 M Open string field theory seems to exist! Plus its dimensional reductions to 0,3,4 dimensions Can incorporate various world-sheet instantons and branes • World-sheet instantons U in CY map to associative cycles U x S1 in CY x S1 • Open world-sheet instantons ending on Slag branes map to three-branes ending on four-branes • Or they map to a single smooth associative cycle in CY x S1

  17. D2 F1 D2

  18. OUTLOOK • OSFT may yield an all-order definition of topological G2 string theory. Is it renormalizable? • Moduli space of associative cycles resums various non-perturbative effects • S-duality exchanges associative and coassociative cycles?? • Applications to CY x S1 – G2 string computes hypermultiplet moduli? • Applications to (singular) G2 compactifications • Add fluxes

More Related