1 / 10

Recall: Conditional Main Effect

Learn how to analyze Conditional Main Effects (CME) in experiments, using interaction and main effects of factors to optimize model parsimony. Discover rules for CME analysis, relationships between CMEs, and application in the Filtration Experiment design. Master the process of identifying significant effects, substitution with CMEs, and selecting the optimal model. Enhance your experimental design skills by integrating CME analysis techniques effectively.

bsampson
Download Presentation

Recall: Conditional Main Effect

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Recall: Conditional Main Effect • Consider two factors A and B, each at two levels denoted by + and – : • Interaction effect: • Conditional main effect of A given B at : • CME. • Conditional main effect of A given B at : • CME. • Switching the roles of A and B, CME and CME can be similarly defined. (1) (2) 1

  2. Rule 1 of CME Analysis • By adding 𝑀𝐸(𝐴) and 𝐼𝑁𝑇(𝐴,𝐵) (Check (1)+(2)), • 𝑀𝐸(𝐴) + 𝐼𝑁𝑇(𝐴,𝐵) = CME(𝐴|𝐵). (3) • By subtracting 𝑀𝐸(𝐴) and 𝐼𝑁𝑇(𝐴,𝐵), • 𝑀𝐸(𝐴) − 𝐼𝑁𝑇(𝐴,𝐵) = CME (𝐴|𝐵 ). (4) • If 𝑀𝐸(𝐴) and 𝐼𝑁𝑇(𝐴,𝐵) have the same signand are comparable in magnitude, we can replace 𝑀𝐸(𝐴) and 𝐼𝑁𝑇(𝐴,𝐵) by CME(𝐴|𝐵). • Similarly, when 𝑀𝐸(𝐴) and 𝐼𝑁𝑇(𝐴,𝐵) have the opposite sign, they can be replaced by CME(𝐴|𝐵). • Rule 1: • Substitute a pair of interaction effect and its parental main effect • that have similar magnitudes with one of the corresponding two CMEs. • Note: It achieves model parsimony (why?) 2

  3. A design and CMEs • For CME(𝐴|𝐵+), we call 𝑀𝐸(𝐴) its parent effect and 𝐼𝑁𝑇(𝐴,𝐵) its interaction effect. • Use , etc. as its shorthand notation. Table 1: CMEs and Factorial Effects from the Design with 3

  4. Siblings and Family • CMEs having the same parent effect and interaction effects are called twin effects, e.g.,CME and CME. • CMEs having the same parent effect but different interaction effects are called siblings effects, e.g.,CME and CME • The group of CMEs having the same or aliased interaction effects belongs to the same family, e.q., CME and CMEin Table 1.

  5. More Relationships • Summary of the relationships between various CMEs • CMEs are orthogonal to all the traditional effects except for their parent effects and interaction effects. • Sibling CMEs are not orthogonal to each other. • CMEs in the same family are not orthogonal. • CMEs with different parent effects and different interaction effects are orthogonal. (Example: and in the Table.)

  6. Rules 2 and 3 of CME Analysis • Rule 2: • Only one CME among its siblings can be included in the model. • Only one CME from a family can be included in the model. • Rule 3:CMEs with different parent effects and different interaction effects can be included in the same model. • Justification:In order to avoid generating too many incompatible models, only orthogonal effects are included in the model search.

  7. CME Analysis • Use the traditional analysis methods such as ANOVA or half-normal plot, to select significant effects, including aliased pairs of effects. Go to ii. • Among all the significant effects, use Rule 1 to find a pair of interaction effect and its parental main effect, and substitute them with an appropriate CME. Use Rules 2 and 3 to guide the search and substitution of other such pairs until they are exhausted. • In step i, a formal method like Lenth’s method (Section 4.9) can be used instead of the half-normal plots.

  8. Illustration with Filtration Experiment • Four factors: • Temperature (A) • Pressure (B) • Concentration of formaldehyde (C) • Stirring rate (D) • design with , aliasing relations • like , etc.

  9. Illustration with Filtration Experiment • design with • Traditional analysis: • Step (ii) • A and AD are both significant • Consider A|D sinceAandDhavesamesign • Dand DB are both significant • ConsiderD|B since D and B have opposite sign The CME analysis (A|D) (D|B)

  10. Summary of Filtration Experiment • In the traditional analysis, we have: • In the CME analysis, we have: • The third model is the most parsimonious and best in terms of p values for significant effects. All three models have c values. • The CMEs (A|D ) and (D|B ) in the lasttwo models have good engineering interpretations.

More Related