1 / 21

Optimizing Numerical Integration with Quasi-Random Numbers

Learn about fast integration methods using quasi-random numbers to minimize error and optimize accuracy in numerical computations. Explore discrepancy, Koksma-Hlawka inequality, pseudo-random vs. quasi-random numbers, and examples of applications. Discover generators for quasi-random numbers, optimizing discrepancy, and comparing techniques in various dimensions.

bsnyder
Download Presentation

Optimizing Numerical Integration with Quasi-Random Numbers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fast integration usingquasi-randomnumbers J.Bossert, M.Feindt, U.Kerzel University of Karlsruhe ACAT 05

  2. Outline • Numerical integration • Discrepancy • The Koksma-Hlawka inequality • Pseudo- and quasi-random numbers • Generators for quasi-random numbers • Optimising the discrepancy • Quasi-random numbers in n dimensions • Comparison • Examples Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  3. Numerical integration • Integral evaluation using MC technique • interprete integral as expectation value • estimate by averaging over N samples: use uniformly distributed pseudo-random numbers to sample • define error: Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  4. Discrepancy • measure of roughness (deviation from desired flat distribution) large discrepancy small discrepancy Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  5. Discrepancy cont... • in 2 dimensions: • local discrepancy (number of points in J proportional to ratio of area of J to unit square) • generalised to s dimensions N # points in unit square # points in J Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  6. Discrepancy cont... • Discrepancy of a ensemble P with norm: *: one corner of J in (0,0) of unit square Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  7. Koksma-Hlawka inequality • relates error on numerical integration with discrepancy: • two handles to minimise error : • minimise variation of function • variable transformation • importance sampling • sample with numbers with low discrepancy Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  8. Pseudo-random numbers • follow deterministric pattern • created by e.g. linear congruence generator • statistically independent from each other • simulated “real” random numbers • Beware of period of generator (e.g. Ranlux: 10165 ) • Discrepancy: Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  9. e.g. n=4, d=2 !N=16 Lattice • 1d: equidistant points have minimal discrepancy • first idea: extend to s dimensions ! lattice • need N=nd points (otherwise no lattice) Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  10. Quasi-random numbers • constructed to be evenly distributed • not independent from each other • need to know total number N from beginning • good for integration, not simulation • low discrepancy series: • faster convergence, smaller error Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  11. Quasi-random series • van der Corput series: • other series: • Halton: extending Corput series to several dimensions • Hammersly: replace 1st dim. of Halton series by lattice • ) lower discrepancy radically inverse function: Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  12. (T,M,S) nets and (T,S) series • (t,s) series:class of quasi-random numbers using radically inverse functions with low discrepancy • (t,m,s) net:each elementary interval E (Vol(E) = bt-m ) contains bt points of series with bm total points basis (2,6,2) net: 26 = 64 total points 22 = 4 points in E elementary interval E Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  13. Pseudo- vs. Quasi-random • generate 2048 numbers pseudo random quasi random Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  14. Comparison lattice pseudo- random quasi- random Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  15. Generator examples empty structure appears Niederreiter Faure Sobol Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  16. regions with much lower discrepancy Optimising discrepancy • Minima for N = 2k • “tune” discrepancy by carefully choosing needed N Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  17. Niederreiter s=10 3 orders of manitude s=2 several dimensions compare discrepancy in several dimensions ! quasi-random numbers good in few dimensions: Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  18. N Pseudo Halton Faure Sobol Niederreiter Hammersly lattice 1024 1.03·10-1 1.72 ·10-2 1.55 ·10-2 1.03 ·10-2 2.36 ·10-3 7.37 ·10-4 4.61 ·10-4 8192 3.60 ¢ 10-2 1.98 ¢ 10-3 1.94 ¢ 10-3 6.20 ¢ 10-4 1.73 ¢ 10-4 1.24 ¢ 10-5 ----------- 16384 2.53 ·10-2 9.08 ·10-4 9.56 ·10-4 2.96 ·10-4 7.11 ·10-5 5.04·10-6 9.66 ·10-5 Example: Breit-Wigner numerical integration of multi-dim. BW e.g. 2 dimensions: deviation from real integral value: (8.8116863 ¢ 10-1) Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  19. Optimising numerical integration • Example:convolution of BW with resolution per event (B0 mixing analysis) • use quasi-random numbers ) fewer numbers N needed for evaluation • transform for optimal function sampling ) importance-sampling Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  20. Q-VEGAS • VEGAS: package for numerical integration in severaldimensions: • start with uniform intervals • evaluate function values in these intervals • iteratively adopt interval structure to shape of function • Q-VEGAS: use quasi-random numbers instead of pseudo-random numbers: • faster and more accurate evaluation Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

  21. instead of Summary • Low discrepancy (=evenly distributed) numbers important in numerical integration. • Quasi-random numbers superior in few dimensions: • faster convergence • higher accuracy • Wide range of applications, e.g. Q-Vegas Ulrich Kerzel, University of Karlsruhe, ACAT 05 - Zeuthen

More Related