390 likes | 647 Views
Halo Effective Field Theory. U. van Kolck. University of Arizona. Supported in part by US DOE. Background by S. Hossenfelder. Hnning. Outline. EFT Nucleon-alpha system Alpha-alpha system Other systems Outlook. Nuclear physics scales. expansion in. perturbative QCD.
E N D
Halo Effective Field Theory U. van Kolck University of Arizona Supported in part by US DOE v. Kolck, Halo EFT Background by S. Hossenfelder
Hnning v. Kolck, Halo EFT
Outline • EFT • Nucleon-alpha system • Alpha-alpha system • Other systems • Outlook v. Kolck, Halo EFT
Nuclear physics scales expansion in perturbative QCD unknown; use brute force (lattice, …) ~1 GeV hadronic theory Chiral EFT ~100 MeV no small coupling constants! v. Kolck, Halo EFT
Fukugita et al. ‘95 triplet scattering length Lattice QCD: quenched cf. Beane et al ‘06 Beane, Bedaque, Savage + v.K. ’02 … EFT: (incomplete) NLO unitarity limit Deuteron binding energy Large deuteron size because New scale v. Kolck, Halo EFT
Nuclear physics scales expansion in perturbative QCD unknown; use brute force (lattice, …) ~1 GeV hadronic theory Chiral EFT ~100 MeV ~30 MeV Contact EFT no small coupling constants! v. Kolck, Halo EFT
All possible interactions allowed by gauge invariance Expansion in powers of distance scale of underlying distribution distance scale of interest v. Kolck, Halo EFT
pionless EFT • degrees of freedom: nucleons • symmetries: Lorentz, B, P, T • expansion in: non-relativistic multipole Kaplan ’97 v.K. ’99 simplest formulation: auxiliary field for two-nucleon bound states omitting spin, isospin v. Kolck, Halo EFT sign sign
Bedaque, Hammer + vK ’98, ’99, ‘00 Hammer, Platter + Meissner ’04 Stetcu, Barrett + v.K. ’07 … • describes structure and reactions of bound states -- deuteron, triton, alpha particle • can be extended to p-shell nuclei with No-Core Shell Model • makes evident new phenomena -- from one-parameter three-body force at LO: SO(4) invariance, limit-cycle behavior, Phillips line, Efimov spectrum First orders apply also to atoms from - many-body systems get complicated rapidly, just as for models v. Kolck, Halo EFT
new scale leads to proliferation of shallow states (near driplines): loosely bound nucleons around tightly bound cores core p n n p p n p n Halo/Cluster states p n separation energy core excitation energy v. Kolck, Halo EFT
e.g. resonance at resonance at bound state at resonance at resonance at bound state at resonance at resonance at v. Kolck, Halo EFT
halo EFT • degrees of freedom: nucleons, cores • symmetries: Lorentz, B, P, T • expansion in: non-relativistic multipole simplest formulation: auxiliary fields for core + nucleon states e.g. v. Kolck, Halo EFT
Bertulani, Hammer + v.K. ’02 Bedaque, Hammer + v.K. ’03 spin transition operator v. Kolck, Halo EFT
= + + … = reduced mass resonance at if and width = + + … v. Kolck, Halo EFT
other waves: = + + … v. Kolck, Halo EFT
etc. v. Kolck, Halo EFT
Bedaque, Hammer + v.K. ’03 NNDC, BNL Haesner et al. ‘83 v. Kolck, Halo EFT
except at where = + + … enhanced by resum self-energy v. Kolck, Halo EFT
Bertulani, Hammer + v.K. ’02 NNDC, BNL Haesner et al. ‘83 v. Kolck, Halo EFT
Bertulani, Hammer + v.K. ’02 PSA, Arndt et al. ’73 scatt length only v. Kolck, Halo EFT
Arndt et al ‘73 cf. consistent… v. Kolck, Halo EFT
Higa, Bertulani + v.K. in progress + electromagnetic interactions Sommerfeld parameter Coulomb transverse photons corrections = + + … + = + non-perturbative for v. Kolck, Halo EFT
= + pure Coulomb Coulomb/short-range interference Coulomb phase shift = = = + + … v. Kolck, Halo EFT
Higa, Hammer + v.K. ’08 deep non-perturbative Coulomb region! Sommerfeld factor = Landau-Smorodinsky function v. Kolck, Halo EFT Coulomb-corrected phase shift
= + + … unitarity limit in LO : renorm scale v. Kolck, Halo EFT “usual” fine-tuning?
= + + … exponentially suppressed since Coulomb “short-ranged”
Expansion around pole: exponential suppression v. Kolck, Halo EFT
Higa, Hammer + v.K. ‘08 ‘69 Extra fitting parameters none fitted with Wuestenbecker et al. ‘92 v. Kolck, Halo EFT
Higa, Hammer + v.K. ‘08 Rasche ‘67 cf. also, consistent… but fine-tuning of 1 in 10! v. Kolck, Halo EFT
Higa, Hammer + v.K. ‘08 Rasche ‘67 previous fine-tuning naturalness Extra fine-tuning of 1 in 100! Fine-tuning of 1 in a 1000 between strong and electromagnetic interactions!! v. Kolck, Halo EFT
Rotureau + v.K., in progress Next: three-body states Bedaque, Hammer + v.K., ‘98 Ando + Birse, ’10 Koenig + Hammer, ‘11 cf. in pionless EFT Main issue: three-body force in LO? : yes (preliminary) v. Kolck, Halo EFT
Other cores Rupak + Higa, ’11 Fernando, Higa + Rupak, in preparation field included for excited core state cf. in pionless EFT Chen, Rupak + Savage, ’99 Rupak, ‘00 Goal: one-parameter fit other s-, p-wave parameters fit to scattering data, binding energy v. Kolck, Halo EFT
Hammer + Phillips, ‘11 Coulomb dissociation of 11Be s-, p-wave parameters fit to binding energies, B(E1) transition strength v. Kolck, Halo EFT
Canham + Hammer, ’08, ’10 s-wave interaction with spin 0 at least one Efimov state (negative energies: virtual states) v. Kolck, Halo EFT
SM Forecast QCD lattice Extrapolates to realistically small Pionful EFT Faddeev* eqs, … Extrapolate to larger and larger Pionless EFT NCSM, … Halo/cluster EFT Low-energy reactions v. Kolck, Halo EFT