70 likes | 209 Views
Aim: How do we solve trig equations involving more than one trig function?. Do Now:. Find all values of in the interval 0 < < 360 o that satisfy the equation 2 sin 2 + sin = 1. alternate form of Pythagorean ID. cos 2 = 1 – sin 2 .
E N D
Aim: How do we solve trig equations involving more than one trig function? Do Now: Find all values of in the interval 0 < < 360o that satisfy the equation 2 sin2 + sin = 1.
alternate form of Pythagorean ID cos2 = 1 – sin2 Solving Multiple Trig Function Equations Solve for in the interval 0º ≤ ≤ 360º: 2cos2 – sin = 1 substitute: 2(1 – sin2 ) – sin = 1 standard form/ factor/ solve: 2– 2sin2 – sin = 1 -2sin2 – sin + 1 = 0 2sin2 + sin – 1 = 0 (2sin – 1)(sin + 1) = 0 (2sin – 1) = 0 (sin + 1) = 0 sin = 1/2 sin = -1 {30º,150º, 270º} = 30º or 150º = 270º
alternate form of Pythagorean ID sec2 = 1 + tan2 Solving Multiple Trig Function Equations Solve for to the nearest degree in the interval 0º ≤ ≤ 360º: 2sec2 – 3tan - 5 = 0 substitute: 2(1 + tan2 ) – 3tan - 5 = 0 standard form/ factor/ solve: 2+ 2tan2 – 3tan - 5 = 0 2tan2 – 3tan - 3 = 0 a = 2, b = -3, c = -3 tan = 2.19, tan = -0.69 = 65o, 145o, 245o, 3250
Model Problems Find to the nearest degree, all values of in the interval 00< < 3600 that satisfy the given equation.
Model Problems Find to the nearest degree, all values of in the interval 00< < 3600 that satisfy the given equation.