1 / 28

Non-factorizable Contributions in B  D (*) M Decays

Explore factorization approach, perturbative QCD, and numerical results in B decay processes. Study the shortcomings, improvements, and comparison of different approaches for better predictions.

bushk
Download Presentation

Non-factorizable Contributions in B  D (*) M Decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-factorizable Contributions in B  D(*)M Decays C.-D. Lü (IHEP, Beijing) Collaborate with Keum, Kurimoto, H.n.Li, A.I.Sanda • Factorization Approach • Formalism of Perturbative QCD (PQCD) • Numerical Results • Summary Moriond -- CD Lu

  2. Operator Product Expansion • VcbVud* • Multiple scales MW >> mb p2 << MW2 • VcbVud* u b d c Moriond -- CD Lu

  3. Four Quark Operators u b d c L=1–5 Moriond -- CD Lu

  4. Two kinds of diagrams contribute to B0→ π+D– decay: π+π+ u ubb B0D– B0 D– O2 O1 color enhancedcolor suppressed C2 ~ 1>C1/3 ~ – 0.2/3 d d Moriond -- CD Lu

  5. Two kinds of diagrams contribute to B0→ π+D– decay: π+π+ u ubb B0D– B0 D– O2 O1 color enhancedcolor suppressed C2 ~ 1>C1/3 ~ – 0.2/3 d d Moriond -- CD Lu

  6. Naïve Factorization Approach Decay matrix element can be separated into two parts: • Short distance Wilson coefficients and Hadronic parameters: form factor and decay constant < π+D–|Heff|B> = a1<π|V-A|0><D|V-A|B> = (C2+C1 /3)fπFB→D First class of decays: ∝ a1 ~ 1 non-factorizable contributions small Moriond -- CD Lu

  7. Two kinds of diagrams contribute to B0→π0decay: u B0π0B0π0 color enhancedcolor suppressed C1 ~ – 0.2~ C2(1/3 ) ≡ C2/Nc ~ 1/3 d d +s8 Moriond -- CD Lu

  8. Two kinds of diagrams contribute to B0→π0decay: u B0π0B0π0 color enhancedcolor suppressed C1 ~ – 0.2~ C2(1/3 +s8) ≡ C2/Nc ~ 1/3 d d Moriond -- CD Lu

  9. Class II Decays Factorization approach: = a2<D| |0><π| |B> = (C1+C2 /Nc)fDF0B→π Class II decay: ∝ a2= C1+C2 /Nc ,small, Exp. B→π0D0decay with large branching ratio non-factorizable contribution may be large,  Factorization approach may not be good Moriond -- CD Lu

  10. Class III Decays B+ B+ u u B+ B+ u u Moriond -- CD Lu

  11. Class III Decays For charged B±decays,both a1 and a2 contribute = a2<D| |0><π| |B> +a1<π| |0><D| |B> = a2fDF0B→π +a1fπF0B→D Class III decays: ∝ a1+r a2 (no relative phase) Since a1 >>a2,they are similar to Class I decays, non-factorizable contribution not important Moriond -- CD Lu

  12. Factorization Approach • class I decays : M (B0 →π +D–) ∝ C1 + C2 /Nceff = a1 • class II decays : M (B0 →π 0D0) ∝ C2 + C1 /Nceff = a2 • class III decays : M (B+ →π +D0) ∝ (C2 + C1) (1+/Nceff ) = a1 + r a2 Moriond -- CD Lu

  13. BD(*)branching ratios(x10–4) a1=1.08 a2=0.21 M. Neubert, B.Stech, hep-ph/9705292 Recent exp. implies phase between a1 & a2 Moriond -- CD Lu

  14. Shortcoming of Factorization Approach • The non-factorizable contributions are not predictable • Form factors are not calculable, depend on experiments or other models • There are difficulties in calculation of the annihilation type diagram (Form factors unknown) • The strong phase can not be calculated well—which is essential for CP violation prediction Moriond -- CD Lu

  15. Improve Factorization Approach: • QCD factorization (BBNS) • Perturbative QCD approach (PQCD) • Soft-collinear effective theory Moriond -- CD Lu

  16. Picture of PQCD Approach 4-quark operator Six quark interaction inside the dotted line Moriond -- CD Lu

  17. PQCDapproach • A ~ ∫d4k1 d4k2 d4k3 Tr [ C(t)B(k1) (k2) (k3)H(k1,k2,k3,t) ] exp{-S(t)} • (k3) are the wave functions for mesons • C(t)is Wilson coefficient of 4-quark operator • exp{-S(t)} is Sudakov factor,to relate the short- and long-distance interaction • H(k1,k2,k3,t) is perturbative calculation of six quark interaction Moriond -- CD Lu

  18. Perturbative Calculation of H(t) in PQCD Approach Form factor—factorizable Non-factorizable Moriond -- CD Lu

  19. Perturbative Calculation of H(t) in PQCD Approach Non-factorizable annihilation diagram Factorizable annihilation diagram Moriond -- CD Lu

  20. For B0 D00 decay, these two diagrams do not cancel arg (a2/a1) ~ – 41° Moriond -- CD Lu

  21. Comparison • a1=1.08, a2=0.21 relative phase not known for Factorization Approach • |a2/a1| ~ 0.47 arg (a2/a1) ~ – 41°in PQCD • The number for a1, a2 are extracted from exp. in Factorization approach • While in PQCD it is predictive Moriond -- CD Lu

  22. Branching ratios of BD(*)(10–3) Y.Y. Keum et al, hep-ph/0305335 Moriond -- CD Lu

  23. Branching ratios of BD(*)(‘)(10–4) CD Lu, PRD 68, 097502 (2003) Moriond -- CD Lu

  24. Pure annihilation type decay BDsK K Ds– b d s b c s B+ B0 u c Ds+ u d s K + • B+ Ds+ K0B0 Ds– K+ • ∝VubVcd*∝ 4 ∝VcbVud*∝ 2 Moriond -- CD Lu

  25. Branching Ratios • B0→DS–K+ ∝ VcbVud* ∝ 2 • Lü, Ukai, EPJ C28, 305(2003):Br ≈ (4±1)x10–5 • Belle: Br = 3.2 x 10–5 • BaBar: Br = 4.6 x 10–5 Moriond -- CD Lu

  26. Summary • PQCD is useful in calculation of B decays to charmed mesons as well as for light mesons • PQCD can get a right number for a2/a1 and the relative phase • Higher order terms may be important. • since mc/mb is not a very small number Moriond -- CD Lu

  27. Thank you! Moriond -- CD Lu

  28. Contributions of different αs in H(t) calculation Fraction αs/ Moriond -- CD Lu

More Related