110 likes | 287 Views
PSO implementation on Hadoop and standalone. Flowchart1. Inner loop. split. Initial particles (random). Split1 of particles. gbest1. Output Total gbest. Total gbest. …. …. Inner loop. split. SplitN of particles. gbestN. outer loop. Flowchart1. Inner loop. split.
E N D
Flowchart1 Inner loop split Initial particles (random) Split1 of particles gbest1 Output Total gbest Total gbest … … Inner loop split SplitN of particles gbestN outer loop
Flowchart1 Inner loop split Initial particles (random) Split1 of particles gbest1 Output Total gbest Total gbest … … Inner loop split SplitN of particles gbestN outer loop Reduce phase Map phase
Flowchart2 Inner loop Pseudo randomly initialize particles Split1 of particles gbest1 Output Total gbest Total gbest … … Inner loop SplitN of particles gbestN outer loop
Flowchart2 Inner loop Pseudo randomly initialize particles Split1 of particles gbest1 HDFS Output Total gbest … … Inner loop SplitN of particles gbestN outer loop (feedback total gbest) Map phase
Experiment results # of lamps : 12 targets : 5 * 1 light ranks : 16 Differ_rate : 0.0001 # of splits : 4
Experiment results # of lamps : 12 targets : 5 * 1 light ranks : 16 Differ_rate : 0.0001 # of splits : 8
Experiment results # of lamps : 396 targets : 90 * 33 light ranks : 16 Differ_rate : 0.0001 # of splits : 4
Experiment results # of lamps : 396 targets : 90 * 33 light ranks : 16 Differ_rate : 0.0001 # of splits : 8
Exchange of particles • Assume that we have an example: # of splits is 4, # of particles in each split is 2500, and we assign 2500/2(ideal) particles to exchange between splits. Under this condition , each split is responsible for emitting(pseudo randomly) 1250/4 particles to exchange. Constraints: # of particles in each split ≥ (# of splits -1)* # of splits *2
Exchange of particles ID0[0…103] ID0[104…207] ID0 ID0[208…311] ID1[0…103] ID1[104…207] ID1 ID1[208…311] ID2[0…103] ID2[104…207] ID2 ID2[208…311] ID3[0…103] ID3[104…207] ID3 ID3[208…311] ID3[0…103],ID2[104…207],ID1[208…311] …… ……