1 / 45

Stereochemistry

Stereochemistry. Prof. Dr. Harno Dwi Pranowo Austrian-Indonesian Center for Computational Chemistry Chemistry Department, FMIPA UGM. Stereoisomers differ only in the way the atoms are oriented in space. They have identical IUPAC names (except for a prefix like cis or trans ).

cade
Download Presentation

Stereochemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stereochemistry Prof. Dr. HarnoDwiPranowo Austrian-Indonesian Center for Computational Chemistry Chemistry Department, FMIPA UGM

  2. Stereoisomers differ only in the way the atoms are oriented in space. They have identical IUPAC names (except for a prefix like cis or trans). They always have the same functional group(s).

  3. Stereochemistry refers to the three-dimensional structure of a molecule.

  4. Although everything has a mirror image, mirror images may or may not be superimposable. • Some molecules are like hands. Left and right hands are mirror images, but they are not identical, or superimposable.

  5. We can now consider several molecules to determine whether or not they are chiral.

  6. A and B are stereoisomers—specifically, they are enantiomers. • A carbon atom with four different groups is a tetrahedral stereogenic center.

  7. In general, a molecule with no stereogenic centers will not be chiral. • With one stereogenic center, a molecule will always be chiral.

  8. How to Locate Stereogenic Centers? • Always omit from consideration all C atoms that cannot be tetrahedral stereogenic centers. These include • CH2 and CH3 groups • Any sp or sp2 hybridized C

  9. Larger organic molecules can have two, three or even hundreds of stereogenic centers.

  10. Stereogenic Centers in Rings

  11. How To Draw Enantiomers?

  12. Enantiomers in Nature

  13. Labeling Stereogenic Centers with R or S • Naming enantiomers with the prefixes R or S is called the Cahn-Ingold-Prelog system. • To designate enantiomers as R or S, priorities must be assigned to each group bonded to the stereogenic center. The atom of highest atomic number gets the highest priority (1).

  14. If two atoms on a stereogenic center are the same, assign priority based on the atomic number of the atoms bonded to these atoms. One atom of higher atomic number determines the higher priority.

  15. To assign a priority to an atom that is part of a multiple bond, treat a multiply bonded atom as an equivalent number of singly bonded atoms. For example, the C of a C=O is considered to be bonded to two O atoms (phantom atoms). • Other common multiple bonds are drawn below:

  16. Pay attention to these examples……

  17. If the lowest priority group is NOT at the back……

  18. R and S Assignments in Compounds with Two or More Stereogenic Centers. One stereoisomer of 2,3-dibromopentane The complete name is (2S,3R)-2,3-dibromopentane

  19. Stereoisomers of 2,3-dibromopentane For a molecule with nstereogenic centers, the maximum number of stereoisomers is 2n.

  20. Let us now consider the stereoisomers of 2,3-dibromobutane. Since this molecule has two stereogenic centers, the maximum number of stereoisomers is 4.

  21. Ameso compound is an achiral compound that contains stereogenic centers. C is a meso compound.

  22. Compound C contains a plane of symmetry, and is achiral. • Mesocompounds contain a plane of symmetry so that they possess two identical halves.

  23. Disubstituted Cycloalkanes Consider 1,3-dibromocyclopentane. Since it has two stereogenic centers, it has a maximum of four stereoisomers.

  24. The cis isomer is superimposable on its mirror image, making the images identical. Thus, A is an achiralmeso compound.

  25. The trans isomer is not superimposable on its mirror image, labeled C, making B and C different compounds. B and C are enantiomers.

  26. Configurational Isomers of Dienes The Z isomer has the high-priority groups on the same side

  27. Review: Types of Isomers

  28. Determining the relationship between a pair of molecules

  29. Optical Activity

  30. The rotation of polarized light can be clockwise or anticlockwise. • If the rotation is clockwise, the compound is called dextrorotatory. The rotation is labeled d or (+). • If the rotation is counterclockwise, the compound is called levorotatory. The rotation is labeled l or (-). • Two enantiomers rotate plane-polarized light to an equal extent but in opposite directions. Thus, if enantiomer A rotates polarized light +5°, the same concentration of enantiomer B rotates it –5°. • No relationship exists between R and S prefixes and the (+) and (-) designations that indicate optical rotation.

  31. Resolution of a Racemic Mixture React a racemic mixture with a chiral compound to form diastereomers, which can be separated.

  32. ChromatographicResolution of Enantiomers

  33. Enantiomers can be dangerously different!

  34. Discrimination of Enantiomers by Biological Molecules

  35. Stereochemistry of Electrophilic Addition Reactions of Alkenes What is the absolute configuration of the product?

  36. Addition reactions that form one asymmetric carbon

More Related