1 / 40

window

window. power. power. [10 ,14:30]. X. X. X. X. Visual servo (.2, -.15). Dig(5). Drive (-1). NIR. data. Workspace pan. Lo res. Rock finder. Hi res. Carbonate. [10 ,14:30].

cade
Download Presentation

window

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. window power power [10 ,14:30] X X X X Visual servo (.2, -.15) Dig(5) Drive (-1) NIR data Workspace pan Lo res Rock finder Hi res Carbonate [10 ,14:30] Incremental Contingency Planning Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David E. Smith, Rich Washington ?

  2. Why Contingency Planning ?? Limited onboard processing CPU, memory, time Safety sequence checking Anticipation setup steps

  3. The Planning Problem • Given: • start time • pose • energy available • actions with uncertain: • durations • resource usage • Possible science objectives • images • samples Compress ……… Visual servo (.2, -.15) Dig(5) Drive(-1) NIR Drive(2) Warmup NIR Maximize (Expected) Scientific Return

  4. Power Storage Time Visual servo (.2, -.15) Lo res Rock finder NIR Warmup NIR t [10:00, 14:00] E > 2 Ah NIR ∆t = ∆p = Technical Challenges Continuous time (& resources) Continuous outcomes Time (& resource) constraints Concurrency Goal selection & optimization g1, g2, g3, g4 …

  5. Just in Case (JIC) Scheduling 1. Seed schedule 2. Identify most likely failure 3. Generate a contingency branch 4. Integrate the branch .4 .2 .1 • Advantages: • Tractability • Simple plans • Anytime

  6. Just in Case (JIC) Planning 1. Seed plan 2. Identify most likely failure 3. Generate a contingency branch 4. Integrate the branch .4 .2 .1

  7. Expected Utility 20 13:20 15 13:40 10 14:00 5 Power 14:20 Start time 14:40 Limits of JIC Scheduling Heuristics t [9:00, 14:30]  = 5s  = 1s  :most probable failures $ : most interesting branch point • Most probable failure points may not be the best branch-points: • It is often too late to attempt other goals when the plan is about to fail. V = 10 HiRes t [10:00, 14:00]  = 600s  = 60s  = 300s  = 5s  = 120s  = 60s  = 1000s  = 500s $    V = 100 Visual servo (.2, -.15) Dig(60) Drive (-2) NIR t [9:00, 16:00]  = 5s  = 1s t [10:00, 13:50]  = 600s  = 60s  = 120s  = 20s V = 50 Lo res Rock finder LIB V = 5 Warmup LIB True for all initial states in the grey box.  = 1200s  = 20s

  8. Just in Case (JIC) Planning ? ? ? ? 1. Seed plan 2. Identify best branch point 3. Generate a contingency branch 5. Evaluate & Integrate the branch Construct plangraph Back-propagate value tables Compute gain Select branch condition & goals Vm Vb r

  9. Construct Plangraph g1 g2 g3 g4

  10. Value Tables V1 g1 r V2 g2 r V3 g3 r V4 g4 r

  11. 5 e 1 e Example q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  12. 5 5 e 15 1 e Simple Propagation q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  13. 5 5 5 e 25 15 1 e Simple Propagation q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  14. 5 5 5 e 25 15 1 1 e 2 Simple Propagation q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  15. 5 5 5 e 25 15 1 1 e r 2 1 2 Conjunctions q g A B (10, 15) (10, 15) p t 1 r C 2 (3, 3) g’ E (2, 2) s t D (1, 5)

  16. 5 5 5 e 25 15 1 1 e r r 2 1 1 2 5 Propagation q g A B (10, 15) (10, 15) p t 1 r C 2 (3, 3) g’ E (2, 2) s t D (1, 5)

  17. 5 5 5 t e 25 1 15 15 t 1 2 t 1 5 1 1 e r r 2 1 1 2 5 Propagation q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  18. 5 5 5 t e 25 1 15 15 t 1 2 t t 1 1 5 5 1 1 e r r 2 1 1 2 5 Combining Tables q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  19. 5 5 5 t e 25 1 15 15 t t 1 1 1 1 5 5 5 5 1 e t r r 1 1 1 2 2 5 Discharging Assumptions q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  20. 5 5 5 e 25 15 1 1 5 5 1 e 1 6 Propagation q g A B (10, 15) (10, 15) p r C (3, 3) g’ E (2, 2) s t D (1, 5)

  21. 5 5 5 e 15 25 15 1 1 5 8 1 e 1 6 Combining Tables q g A B (10, 15) (10, 15) p 1 r C 5 (3, 3) g’ E (2, 2) s t D (1, 5)

  22. 5 5 5 e 15 25 15 1 1 5 8 1 e 1 6 Combining Tables q g A B 5 (10, 15) (10, 15) p 8 25 1 r C 5 (3, 3) g’ E (2, 2) s t D (1, 5)

  23. 5 5 5 e 15 25 15 1 1 5 8 1 e 1 6 Ordering q g A B AB 5 CDE (10, 15) (10, 15) p 8 25 1 r C 5 (3, 3) g’ E (2, 2) s t D DCE (1, 5)

  24. 5 5 e 15 1 1 5 8 1 e 1 6 Achieving Multiple Goals g+g’ + g 5 g’ 15 25 30 q g A B 5 (10, 15) (10, 15) p 8 25 1 r C 5 (3, 3) g’ E (2, 2) s t D (1, 5)

  25. g+g’ g 5 5 5 g’ e 15 25 30 15 g+g’ g 5 g’ 8 25 30 1 1 5 8 1 e 1 6 Achieving Multiple Goals q g A B (10, 15) (10, 15) p 1 r C 5 (3, 3) g’ E (2, 2) s t D (1, 5)

  26. g+g’ g 5 5 5 g’ e 15 25 30 15 g+g’ g 5 g’ 8 25 30 1 1 5 8 1 e 1 6 Goal Annotation g g q g A B (10, 15) (10, 15) p g’ 1 r C 5 g’ (3, 3) g’ E (2, 2) s t D g’ g’ (1, 5) g’

  27. Just in Case (JIC) Planning ? ? ? ? 1. Seed plan 2. Identify best branch point 3. Generate a contingency branch 5. Evaluate & Integrate the branch Construct plangraph Back-propagate value tables Compute gain Select branch condition & goals Vm Vb r

  28. V r Estimating Branch Value V1 V r Max V2 V r V3 V r V4

  29. Vb r Plan Statistics resource probability plan value function P Vm r r V1 V2 V3 V4

  30. Vm ∞ Vb Gain = ∫ P(r) max{0,Vb(r) - Vm(r)} dr r 0 Vb r Expected Branch Gain P r V1 V2 V3 V4

  31. Vm Vb r Vb r Selecting the Branch Condition branch condition branch condition P r V1 V2 V3 V4

  32. Vm Vb r Vb r Selecting Branch Goals branch goals g1 P g3 r r V1 g1 V2 g3 V3 V4

  33. Vm Vb r Evaluating the Branch ? ? ? ? 1. Seed plan 2. Identify best branch point 3. Generate a contingency branch 4. Evaluate & integrate the branch Compute value function Compute actual gain

  34. Gain = ∫ P(r) max{0,Vb(r) - Vm(r)} dr 0 Vb r Actual Branch Gain P actual branch condition Vm Vb r r Branch value function

  35. Remarks: Single Plangraph ? ? ? ? 1. Seed plan 2. Identify best branch point 3. Generate a contingency branch 5. Evaluate & Integrate the branch Construct plangraph Back-propagate value tables Compute gain Select branch condition & goals Vm Vb r

  36. Plan Graph V1 g1 r V2 g2 r V3 g3 r V4 g4 r

  37. V1 g1 r V2 g2 r V3 g3 r V4 g4 r Branch Initial Conditions {p} v r {q,r} v r v r {p,r} v v r r

  38. Vm Vb r Single Plangraph Construct single plangraph Back-propagate value tables 1. Seed plan 2. Identify best branch point 3. Generate a contingency branch 4. Evaluate & integrate the branch ? ? ? ? Discharge conditions Compute gain Select branch condition & goals

  39. Visual servo (.2, -.15) Dig(5) Drive (-1) Hi res [11 ,14:00] Lo res Rock finder NIR Warm NIR V = 100 Visual servo Hi res Visual servo NIR V’ = 30 Visual servo (.2, -.15) ? Dig(5) Drive (-1) Hi res Lo res Rock finder NIR Issues Sensor costs Setup steps Utility updates Floating contingencies

  40. The End.

More Related