2.44k likes | 4.17k Views
The s -Block Elements. The s -Block Elements. Elements of Groups IA * (the alkali metals) and IIA * (the alkaline earth metals) constitute the s -block elements their outermost shell electrons are in the s orbital
E N D
The s-Block Elements • Elements of Groups IA* (the alkali metals) and IIA* (the alkaline earth metals) • constitute the s-block elements • their outermost shell electrons are in the s orbital • *Note: In the following, Groups IA and IIA are abbreviated as Groups I and II respectively.
The s-Block Elements • Similarities • 1. highly reactive metals • 2. strong reducing agents • 3. form ionic compounds with fixed oxidation states of +1 for Group I elements and +2 for Group II elements
[Ne] 3s1 [Ar] 4s1 [Kr] 5s1 [Xe] 6s1 [Rn] 7s1 [Ne] 3s2 [Ar] 4s2 [Kr] 5s2 [Xe] 6s2 [Rn] 7s2 Q.1 Group I Li Lithium Na Sodium K Potassium Rb Rubidium Cs Caesium *Fr Francium Electronic configuration [He] 2s1 Group II Be Beryllium Mg Magnesium Ca Calcium Sr Strontium Ba Barium *Ra Radium Electronic configuration [He] 2s2
Group I elements • Lithium
Group I elements • Sodium
Group I elements • Potassium
Group I elements • Rubidium
Group I elements • Francium - radioactive
Group I elements • Beryllium
Group I elements • Magnesium
Group I elements • Calcium
Group I elements • Strontium
Group I elements • Barium
Group I elements • Radium - radioactive
All have low electronegativity. electropositive
EN down the group EN : Group II > Group I (∵ greater ENC)
Bonding Strength of metallic bond : Group II > Group I m.p./b.p. : Group II > Group I
Hardness : - Group I < Group II Na/K…can be easily cut with a knife
Structure Group I : b.c.c. Group II : f.c.c. or h.c.p. except Ba Density : Group II > Group I
Structure Group I : b.c.c. Group II : f.c.c. or h.c.p. except Ba Density also depends on size and mass of the atoms
Metallic charater (Reactivity) : - High tendency to lose electrons as shown by –ve E Mn+(aq) + ne M(s)
Metallic charater (Reactivity) : - down the groups Group I > Group II
sodium Sodium is stored under paraffin oil
caesium rubidium Caesium and rubidium are stored in vacuum-sealed ampoules
Formation of Basic Oxides 1. Group I Elements • All alkali metals form more than one type of oxide on burning in air (except lithium)
Abundant supply 1. Group I Elements • Three types of oxides: • normal oxides • peroxides • superoxides O2–oxide ion O22–peroxide ion 2O2–superoxide ion
1. Group I Elements • Type of oxide formed depends on • supply of oxygen • reaction temperature • charge density of M+
4Li(s) + O2(g) 2Li2O(s) lithium oxide 1. Group I Elements • Lithium • when it is burnt in air, it forms normaloxide only
4Na(s) + O2(g) 2Na2O(s) sodium oxide 2Na2O(s) + O2(g) 2Na2O2(s) sodium peroxide excess 1. Group I Elements • Sodium • when it is burnt in an abundantsupply of oxygen • forms both the normal oxide and the peroxide
1. Group I Elements • Potassium, rubidium and caesium • form All three types of oxides when burnt in sufficient supply of oxygen
1. Group I Elements • Potassium: • 4K(s) + O2(g) 2K2O(s) potassium oxide • 2K2O(s) + O2(g) 2K2O2(s) potassium peroxide • K2O2(s) + O2(g) 2KO2(s) potassium superoxide
1. Group I Elements • Rubidium: • 4Rb(s) + O2(g) 2Rb2O(s) • 2Rb2O(s) + O2(g) 2Rb2O2(s) • Rb2O2(s) + O2(g) 2RbO2(s)
1. Group I Elements • Caesium: • 4Cs(s) + O2(g) 2Cs2O(s) • 2Cs2O(s) + O2(g) 2Cs2O2(s) • Cs2O2(s) + O2(g) 2CsO2(s)
Oxides formed by Group I elements Cations with high charge densities (Li+ or Na+) tend to polarize the large electron clouds of peroxide ions and/or superoxide ions Making them decompose to give oxide ions
1. Group I Elements The electron cloud of the superoxide ion is greatly distorted by the small lithium ion
Oxides formed by Group I elements White solids Slightly coloured solids Highly coloured solids
KO2 used as oxygen generators and CO2 scrubbers in spacecrafts 4KO2 + 2H2O 4KOH + 3O2 2KOH + CO2 K2CO3 + H2O
2. Group II Elements • Beryllium, magnesium and calcium • form normal oxides only on burning in air • 2Be(s) + O2(g) 2BeO(s) • 2Mg(s) + O2(g) 2MgO(s) • 2Ca(s) + O2(g) 2CaO(s)
Q.2(a) Be2+, Mg2+ and Ba2+ have higher charge densities more polarizing distort the electron cloud of O22 O22 decomposes to give O2
Sr(s) + O2(g) SrO2(s) 2SrO(s) + O2(g) 2SrO2(s) strontium peroxide Q.2(b) 2Sr(s) + O2(g) 2SrO(s) strontium oxide
500C 700C Ba(s) + O2(g) BaO2(s) 2BaO(s) + O2(g) 2BaO2(s) barium peroxide Q.2(b) 2Ba(s) + O2(g) 2BaO(s) barium oxide
Oxides formed by Group II elements KO2 superoxide
Oxides formed by Group II elements All these oxides are basic in nature (except beryllium oxide which is amphoteric)
Formation of hydroxides 1. Group I hydroxides 2Li(s) + 2H2O(l) 2LiOH(aq) + H2(g) 2Na(s) + 2H2O(l) 2NaOH(aq) + H2(g) 2K(s) + 2H2O(l) 2KOH(aq) + H2(g) 2Rb(s) + 2H2O(l) 2RbOH(aq) + H2(g) 2Cs(s) + 2H2O(l) 2CsOH(aq) + H2(g)
Formation of hydroxides 1. Group I hydroxides For normal oxides, M2O(s) + H2O(l) 2MOH(aq) For peroxides, M2O2(s) + 2H2O(l) 2MOH(aq) + H2O2(aq) For superoxides, 2MO2(s) + 2H2O(l) 2MOH(aq) + H2O2(aq) + O2(g)
Formation of hydroxides 2. Group II hydroxides Ca(s) + 2H2O(l) Ca(OH)2(aq) + H2(g) Sr(s) + 2H2O(l) Sr(OH)2(aq) + H2(g) Ba(s) + 2H2O(l) Ba(OH)2(aq) + H2(g) Mg reacts with steam but not water. Mg(s) + H2O(g) MgO(s) + H2(g) Be does not react with water and steam.
MgO(s) + H2O(l) Mg(OH)2(aq) slightly soluble Formation of hydroxides 2. Group II hydroxides CaO(s) + H2O(l) Ca(OH)2(aq) SrO(s) + H2O(l) Sr(OH)2(aq) BaO(s) + H2O(l) Ba(OH)2(aq) BeO(s) + H2O(l) No reaction