400 likes | 678 Views
High Energy Propulsion. Brice Cassenti University of Connecticut. High Energy Propulsion. Fusion Annihilation Photon. Fusion Energy. Binding energy Reactions Propulsion. Binding Energy. Some Fusion Reactions. Nuclear Reactions. DT Fusion Reaction Uranium Fission Lithium Fission.
E N D
High Energy Propulsion Brice Cassenti University of Connecticut
High Energy Propulsion • Fusion • Annihilation • Photon
Fusion Energy • Binding energy • Reactions • Propulsion
Nuclear Reactions • DT Fusion Reaction • Uranium Fission • Lithium Fission
Fusion Reactions • The DT reaction • And Lithium fission reaction • Are equivalent to
Reaction Kinetics • Rate - • Parameter - • Velocity depends on temperature • k is Boltzmann’s constant
Rate vs. Temperature http://www.google.com “nuclear fusion reactor pictures”
Magnetic Confinement Fusion PowerTokamak http://upload.wikimedia.org/wikipedia/commons/4/4b/Tokamak_fields_lg.png
Magnetic Confinement Fusion PowerMirror http://www.google.com “magnetic mirror nuclear fusion reactor pictures”
Fusion Rockets • Magnetic Mirror • End fields unequal: preferential exhaust • Tokamak • Power to expel high speed plasma • Inertial Confinement • Magnetic nozzles align pellet products
Daedalus StudyBritish Interplanetary Society From Nicolson “The Road to the Stars”
Daedalus http://www.grc.nasa.gov/WWW/PAO/images/warp/warp44.gif
Medusa http://en.wikipedia.org/wiki/File:MedusaNuclearPropulsionOperatingSequenceDrawing.png
Medusa Specific Impulse: 100,000-500,000 http://en.wikipedia.org/wiki/File:MedusaNuclearPropulsionOperatingSequenceDrawing.png
Matter-Antimatter Annihilation • Positron-Electron Annihilation
Tritium Fuel Considerations • Tritium is naturally radioactive • Beta decay • Half-life ~12 years • Tritium requires cryogenic storage • Lithium-6 is not radioactive • Lithium-6 does not require cryogenic storage
Hybrid Fusion-Fission Nuclear Pulse Propulsion • Use of Li6 • Reduces tritium handling problems • Decreases specific impulse • System can be developed in a two step process • Use fusion to boost the specific impulse of a pulse fission rocket • Evolve to a full hybrid system
Typical PelletGeometry • Core radius 0.05 mm • Fuel Radius 1.00 cm • Tungsten Shell Thickness 0.10 mm • Antiproton Beam Radius 0.10 mm • Uranium Hemisphere Radius 0.30 mm
Typical Pellet Performance • Antiproton Pulse 2x1013 for 30 ns • Maximum Field 24 MG • Pellet Mass 3.5 g • Specific Impulse • 600,000 s for 100% fusion • 200,000 s for 10% fusion • 3,000 s for contained fusion
Sanger Electron-PositronAnnihilation Rocket By G. Matloff
Pion Rocket Isp: 10,000,000 sec By R. Forward
References • Kammash, T., (editor), Fusion Energy in Space Propulsion, Volume 167 Progress in Astronautice and Aeronautics, American Institute of Aeronautics and Astronautics, Washington, DC,, 1995. • Kammash, T, Fusion Reactor Physics, Ann Arbor Physics, Inc. Ann Arbor, MI, 1976. • Manheimer, W.M., An Introduction to Trapped-Particle Instability in Tokamaks, Energy Research and Development Administration, Washington, DC, 1972. • Miley, G.K., Fusion Energy Conversion, American Nuclear Society and U.S. Energy research and Development Administration, Chicago, 1976. • Miyamoto, K., Plasma Physics for Nuclear Fusion, The MIT Press, Cambridge, MA, 1987. • Vedenov, A.A., Theory of Turbulent Plasma, National Aeronautics and Space Administration, National Science Foundation, and Isreal Program for Scientific Translations, Jerusalem, 1966.