1 / 27

Jost 関数法と共鳴部分幅および仮想状態

Jost 関数法と共鳴部分幅および仮想状態. Jost 関数法 (Jost Function Method) 共鳴部分幅 ( Partial Widths) 仮想状態 (Virtual States). Table I. Values of the resonant poles of the Noro-Taylor model. pole E r (a.u.) Γ (a.u.) 1 4.768197 1.420192 × 10 -3 2 7.241200 1.511912

caitir
Download Presentation

Jost 関数法と共鳴部分幅および仮想状態

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Jost関数法と共鳴部分幅および仮想状態 Jost 関数法 (Jost Function Method) 共鳴部分幅 (Partial Widths) 仮想状態 (Virtual States)

  2. Table I. Values of the resonant poles of theNoro-Taylor model. pole Er (a.u.)Γ (a.u.) 1 4.768197 1.420192 ×10 -3 2 7.2412001.511912 3 8.171216 6.508332 4 8.440526 12.56299 5 8.072642 19.14563 6 7.123813 26.02534 7 5.641023 33.07014 8 3.662702 40.19467 9 1.220763 47.33935 10 -1.658115 54.46087 11 -4.950418 61.52509 12 -8.635939 68.50621

  3. PartialDecayWidths Channel radius dependence

  4. Definition of partial widths N. Moiseyv and U. Peskin; Phys. Rev. A42(1990) 255.

  5. Partial widths of resonant states Jost Function Method; S.A. Sofianos and S.A. Rakityansky J. Phys. A: Math. Gen. 30(1997), 3725, J. Phys. A: Math. Gen. 31(1998), 5149. : Homogeneous solutions : Resonances

  6. Partial Width

  7. Current density method for partial widths N. Moiseyev and U. Peskin; Phys. Rev. A42(1990) 255. Partial Width:

  8. T-matrixscheme

  9. Jost Function Method + Complex Scaling Method Complex Scaled Jost Function Method; (CSJFM) Application to a three body resonance

  10. 5He: 4He+n

  11. H. Masui, S. Aoyama, T. Myo, K. Kato and K. Ikeda, Nucl. Phys. A673 (2000), 207

  12. 10Li: 9Li+n

More Related