270 likes | 649 Views
Jost 関数法と共鳴部分幅および仮想状態. Jost 関数法 (Jost Function Method) 共鳴部分幅 ( Partial Widths) 仮想状態 (Virtual States). Table I. Values of the resonant poles of the Noro-Taylor model. pole E r (a.u.) Γ (a.u.) 1 4.768197 1.420192 × 10 -3 2 7.241200 1.511912
E N D
Jost関数法と共鳴部分幅および仮想状態 Jost 関数法 (Jost Function Method) 共鳴部分幅 (Partial Widths) 仮想状態 (Virtual States)
Table I. Values of the resonant poles of theNoro-Taylor model. pole Er (a.u.)Γ (a.u.) 1 4.768197 1.420192 ×10 -3 2 7.2412001.511912 3 8.171216 6.508332 4 8.440526 12.56299 5 8.072642 19.14563 6 7.123813 26.02534 7 5.641023 33.07014 8 3.662702 40.19467 9 1.220763 47.33935 10 -1.658115 54.46087 11 -4.950418 61.52509 12 -8.635939 68.50621
PartialDecayWidths Channel radius dependence
Definition of partial widths N. Moiseyv and U. Peskin; Phys. Rev. A42(1990) 255.
Partial widths of resonant states Jost Function Method; S.A. Sofianos and S.A. Rakityansky J. Phys. A: Math. Gen. 30(1997), 3725, J. Phys. A: Math. Gen. 31(1998), 5149. : Homogeneous solutions : Resonances
Current density method for partial widths N. Moiseyev and U. Peskin; Phys. Rev. A42(1990) 255. Partial Width:
Jost Function Method + Complex Scaling Method Complex Scaled Jost Function Method; (CSJFM) Application to a three body resonance
H. Masui, S. Aoyama, T. Myo, K. Kato and K. Ikeda, Nucl. Phys. A673 (2000), 207