760 likes | 1.07k Views
On the target set selection problem. 江俊瑩. Potential Customers. Free Samples. Word-of-mouth. Marketing. Marketing. Contagion. A Social Network with Threshold Function. 2. 1. 3. 4. 3. 1. 1. 2. 2. 2. Target Set S. 2. 1. 3. 4. 3. 1. 1. 2. 2. 2.
E N D
A Social Network with Threshold Function 2 1 3 4 3 1 1 2 2 2
Target Set S 2 1 3 4 3 1 1 2 2 2
Activation Process Starting form S 2 1 3 4 3 1 1 2 2 2
min-seed(G,θ) 2 1 3 4 3 1 1 2 2 2
TARGET SET SELECTION TARGETSETSELECTION:
Threshold Models • Constant threshold: for all vertices v in G. • Majority threshold : for all vertices v in G. • Strict majority threshold : for all vertices v in G.
Parallel updating rule: All white vertices v that have at least black neighbors at the previous round are colored black. The colors of the other vertices do not change. Sequential updating rule: Exactly one of white vertices that have at least black neighbors at the previous round is colored black. The colors of the other vertices do not change. Updating rules
Lemma: Let be a connected graph G with thresholds on V(G). An optimal target set for under the sequential updating rule is also an optimal target set for under the parallel updating rule, and vice versa. Parallel = Sequential
[Dreyer and Roberts, 2009] In constant threshold model, it is NP-hard to compute the min-seed for any . Bad News [Peleg, 2002] It is NP-hard to compute the optimal target set for majority thresholds. [Chen Ning, 2009] The TARGET SET SELECTION problem is NP-hard when the thresholds are at most 2.
[Chen Ning, 2009] Given any regular graph with thresholds for any vertex v, the TARGET SET SELECTION problem can not be approximatedwithin the ratio of , for any fixed constant , unless Extremely Bad News !!
[Ben-Zwi et al, 2010] For n-vertices graph G with treewidth bounded by , the TARGET SET SELECTION problem can be solved in time. Results for Trees [Dreyer and Roberts, 2009] When G is a tree, the TARGET SET SELECTION problem can be solved in linear time for constant thresholds. [Chen Ning, 2009] When the underlying graph is a tree, the problem can be solved in polynomial-time under a general threshold model.
v v vertex-sum at v of G1and G2 G1 ⊕v G2 v G1 G2
v (G1 ⊕v G2 , θ)
1 2 3 2 2 2 5 2 5 3 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set
1 2 3 2 2 2 5 2 5 3 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 1 2 3 2 2 2 2 5 d 2 5 3 e 5 1 1 3 5 2 2 2 2 2 6 2 2 2 2 2 1 1 Optimal Target Set 2 b 2 5 d e 4 c a 4
2 b c 4 4 a 2 d e 5 Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 5 2 2 2 2 2 2 6 b 2 5 2 d 2 e 2 2 2 4 c a 4 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 5-2 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 2 5 2 5 3 1 1 3 3 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set S1 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 2 5 2 5 3 1 1 3 3 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set S1 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 0 2 2 2 1 2 1 3 0 2 2 2 1 2 5 2 5 3 1 1 3 3 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set S1 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 0 2 2 2 1 2 1 3 0 2 2 2 1 2 5 2 5 0 1 2 2 1 2 1201 2 2 1 3 1 1 3 3 2 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set S1 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 0 2 2 2 1 2 1 3 0 2 2 2 1 2 5 2 5 0 1 2 2 1 2 1201 2 2 1 3 1 1 3 3 2 2 2 2 2 6 1 2 2 1 2 11 2 2 1 2 2 2 2 2 1 1
Optimal Target Set S1 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 0 2 2 2 1 2 1 3 0 2 2 2 1 2 5 2 5 0 1 2 2 1 2 1201 2 2 1 3 1 1 3 3 2 2 2 2 2 6 1 2 2 1 2 11 2 2 1 2 2 2 2 2 1 1
Optimal Target Set S1 1 2 0 2 2 2 1 2 2 3 1 2 2 2 1 3 2 2 0 2 2 2 1 2 1 3 0 2 2 2 1 2 5 2 5 0 1 2 2 1 2 1201 2 2 1 3 1 1 3 3 2 2 2 2 2 6 1 2 2 1 2 11 2 2 1 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 2-1 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 1 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 1 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 1 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 1 2 2 2 2 6 2 2 2 2 2 1 1
Optimal Target Set 1 2 3 2 2 2 5 2 5 3 1 1 3 3 1 2 2 2 2 6 2 2-0 2 2 2 1 1