420 likes | 600 Views
Gravitational wave interferometer OPTICS. François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006. Fabry-Perot cavity in practice Rules for optical design Optical performances. Contents. I. Fabry-Perot cavity in practice
E N D
Gravitational wave interferometer OPTICS • François BONDU • CNRS UMR 6162 ARTEMIS, • Observatoire de la Côte d’Azur, Nice, France • EGO, Cascina, Italy • May 2006 Fabry-Perot cavity in practice Rules for optical design Optical performances
Contents • I. Fabry-Perot cavity in practice • Scalar parameters – cavity reflectivity, mirror transmissions, losses • Matching: impedance, frequency/length tuning, wavefront • Length / Frequency measurement: cavity transfer function • II. Rules for gravitational wave interferometer optical design • Optimum values for mirror transmissions • “dark fringe”: contrast defect • “Mode Cleaner” • III. Optical performances • Actual performances: • Mirror metrology • Optical simulation • Accurate in-situ metrology
Input <<Mode Cleaner>> to filter out input beam jitter and select mode Output Mode Cleaner to filter output mode Michelson configuration at dark fringe + servo loop to cancel laser frequency noise Recycling mirror to reduce shot noise Long arms to divide mirror and suspension thermal noise L=3 km L=144m Slave laser Master laser VIRGO optical design Fabry-Perot cavity to detect gravitational wave Suspended mirrors to cancel seismic noise
1. Fabry-Perot cavity: A. parameters SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors REFLECTION TRANSMISSION Can we understand these shapes?
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Ein Etrans Esto Eref Mirror 1 Mirror 2 Ert = r1 P-1 r2 P Esto
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Ert = r1 P-1 r2 P Esto Round trip “losses”
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Ert = r1 P-1 r2 P Esto Period: Free spectral range
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors RESONANCE CONDITION Recycling gain
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors RESONANCE CONDITION Suppose now Cavity pole
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Finesse
1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors on resonance reflectivity
1. Fabry-Perot cavity: A. parameters SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors T1 = 12% T2 = 5% L = 0 (finesse = 35) REFLECTION TRANSMISSION
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Optimal coupling Over-coupling Under-coupling
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Frequency/Length tuning
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Ein Etrans Esto Eref z axis Mirror 1 Mirror 2 Ert = r1 P-1 r2 P Esto Ein(x,y) ; Esto(x,y) ; r1, P, r2 are operators
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Wavefront matching: Esto(x,y) = k Ein(x,y) (k complex number) Esto Ein Superpose angles and lateral drifts of incoming and resonating beam <<ALIGNMENT ACTIVITY>>
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Wavefront matching: Esto(x,y) = k Ein(x,y) (k complex number) Ein Esto Superpose beam positions and beam widths <<MATCHING ACTIVITY>>
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Definition of beam coupling: Round trip coupling losses: • Too small mirror diameters “clipping” • imperfect surface: local defects, random figures
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: Definition of stability: Definition of stability in case of perfect surface figures:
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer Charles Fabry (1867-1945) Alfred Perot (1863-1925) Amédée Jobin (mirror manufacturer) (1861-1945) Gustave Yvon (>1911) Marseille – beginning of 20th century “Les franges des lames minces argentées”, Annales de Chimie et de Physique, 7e série, t12, 12 décembre 1897 “A taste of Fabry and Perot’s Discoveries, Physica Scripta, T86, 76-82, 2000
1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer
SB- C SB+ 1. Fabry-Perot cavity:C. measurement Phase modulated laser: m phase modulation index fm modulation frequency
1. Fabry-Perot cavity:C. measurement error signal: Does not provide information about frequency behavior once locked
SB- C SB+ This pole 1. Fabry-Perot cavity:C. measurement Modulated laser + measurement line: n phase modulation index fn modulation frequency f << FSR, f ≠ fm
Contents • I. Fabry-Perot cavity in practice • Scalar parameters – cavity reflectivity, mirror transmissions, losses • Matching: impedance, frequency/length tuning, wavefront • Length / Frequency measurement: cavity transfer function • II. Rules for gravitational wave interferometer optical design • Optimum values for mirror transmissions • “dark fringe”: contrast defect • “Mode Cleaner” • III. Optical performances • Actual performances: • Mirror metrology • Optical simulation • Accurate in-situ metrology
2. Optical design: A. mirror transmissions Fabry-Perot cavity with Rmax transmissions as end mirrors Virgo mirrors: LRT ~500 ppm, Gcavity ~ 32 reflectivity defect 1.5% Was estimated 1-5 % at design Have as much as possible power on beamsplitter • Match “losses” of cavities with recycling mirror Was estimated 8 % at design (5.5 % recent refit)
2. Optical design: B. dark fringe • Michelson simple : laser Pin BS Pmax, Pmin = Pout On black and white fringes Pout
L=3 km Master laser 2. Optical design: C. Mode Cleaners Input <<Mode Cleaner>> to filter out input beam jitter and select mode L=144m Slave laser Output Mode Cleaner to filter output mode
Detection Photodiodes on Detection Bench Output Mode Cleaner on Suspended Bench Output Mode-Cleaner Beam
Contents • I. Fabry-Perot cavity in practice • Scalar parameters – cavity reflectivity, mirror transmissions, losses • Matching: impedance, frequency/length tuning, wavefront • Length / Frequency measurement: cavity transfer function • II. Rules for gravitational wave interferometer optical design • Optimum values for mirror transmissions • “dark fringe”: contrast defect • “Mode Cleaner” • III. Optical performances • Actual performances: • Mirror metrology • Optical simulation • Accurate in-situ metrology
F = 51 ±1 Slave laser 16.7 W 7.1 W F = 49±0.5 1 W 1 – C = 3.10-3 (mean) Master laser 1 – C < 10-4 Measured optical parameters Losses in input Mode Cleaner? Arm finesses? Recycling gain? Gcarrier = 30-35 (exp. 50) GSB ~ 20 (exp. 36) T=10% III. Optical performances
Absorption Photothermal Deflection System Scatterometer CASI 400x400mm Micromap 400x400 mm (local defects) Phase shift interferometer Mirror metrology • Before and/or after the coating process, maps are measured: • Mirror surface map (modified profilometer) • bulk and coating absorption map (“mirage” bench) • scatter map (commercial instrument) • transmission map (commercial instrument) • local defects measurements • birefringency reproducibility 0.4 nm; step 0.35 mm resolution 30 ppb/cm // 20 ppb resolution of a few ppm transmission map Instruments: ESPCI, Paris Coating, 140 m2 room class 1: LMA, Lyon The VIRGO large mirrors: a challenge for low loss coatings, CQG 2004, 21
Surface maps Ex: a large flat mirror • Good qualitysilica • Good polishing • Control of coating deposition • (DIBS) with no pollutants • - Surface correction Diam 35 cm Rms 2.3 nm p-p 11.5 nm III. Optical performances
Optical simulation • Check out cavity visibility • (total losses) • Check out expected recycling gain, • for varying radii of curvature • Check out expected contrast defect • Check out modulation frequency • Improve interferometer • parameters… • TWO optical programs: • One that propagates wavefront • with FFT • One that decomposes beams • on TEM HG(m,n) base III. Optical performances
Example: Virgo simulation with surface maps and with an incoming field of 20W Contrast defect= 0.94% North arm amplification = 31.65 West arm amplification = 32.06 Recycling gain = 34.56 III. Optical performances
Fabry-Perot cavity transfer function measurements Details at FFSR Fit values with 95% confidence interval: fp = 479 +/- 3.3 Hz fz = -177 +/- 2.2 Hz FSR = 1044039 +/- 2.2 Hz L = 143.573326 +/- 30 mm Error bars: from measurement errors, Not for constant biases. (fit both real and imaginary parts simultaneously) III. Optical performances
Roud-trip losses: Computed from mirror maps: 115 ppm From measurements: 846 +/- 5 ppm Input Mode Cleaner Losses T = 5.7 ppm Mirror transmission measurements + transfer function details measurements => Mode mismatching 17% => Cavity transmissitivity for TEM00 83% (september 2005) T=2457 ppm T=2427 ppm III. Optical performances
Contents • I. Fabry-Perot cavity in practice • Scalar parameters – cavity reflectivity, mirror transmissions, losses • Matching: impedance, frequency/length tuning, wavefront • Length / Frequency measurement: cavity transfer function • II. Rules for gravitational wave interferometer optical design • Optimum values for mirror transmissions • “dark fringe”: contrast defect • “Mode Cleaner” • III. Optical performances • Actual performances: • Mirror metrology • Optical simulation • Accurate in-situ metrology