1 / 18

Inc.

A. Inc. G. [. ,. ,. ,. ,. ,. ]. ,. ,. i(t). If Time Marches on why is Time Constant ?. V. V. V. V. V. V. 0. 2. 1. 0. R. C. (a). (b). (a). (b). +. R. C. 1. 1. +. R. v. - v (t). [. ,. ,. ,. ,. ,. ]. 0. C. ,. ,. +. v(t). L. C. X. R. X. R.

caldwellb
Download Presentation

Inc.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Inc. G [ , , , , , ] , , i(t) If Time Marches on why is Time Constant? V V V V V V 0 2 1 0 R C (a) (b) (a) (b) + R C 1 1 + R v - v (t) [ , , , , , ] 0 C , , + v(t) L C X R X R L I t t I 1 0 C 1 L 1 1 1 V V V V V V V 3 1 1 0 2 0 0

  2. A Inc. G If Time Marches on why is Time Constant? [ , , , , , ] , , i(t) From the capacitor’s perspective; - v (t) v V 0 C 3 M M 1 2 HS (a) (b) 5 0 10 6 0 10 R C 1 1 + V V V V 1 2 0 1 + V 2 C R X t I 0 1 C 1 V V 0 1

  3. -1 A Inc. G If Time Marches on why is Time Constant? (2 f )(C) [ ] Model to Memorize [ , , , , , ] , , i(t) dv I (t) = C C Current vs Time dt V 3 1 M = 2 C M HS mA (6ma)(0.368) = 2.2ma 1 4 - (t / ) 5 (1.8, 2.2) (a) (b) 0 e 10 i (t) = I c 0 6 0 10 2 R C - v (t) v 1 1 + 0 C V V V V 1 0 2 1 + v (t) + 1.8ms C Time V i (t) dt t t v v 2 2 1 2 C 1 R X C I I t 0 0 C 1 1 V V 0 1

  4. -1 A Inc. G If Time Marches on why is Time Constant? (2 f )(C) [ ] Model to Memorize M HS M dv 1 2 I (t) = [ , , , , , ] C , , i(t) C dt (a) (b) - (t / ) e i (t) = c (6ma)(0.368) = 2.2ma + 1 = C 4 + ( , i(t)) mA (1.8,2.2) 2 V V V 5 2 1 0 0 + 1.8ms 10 milliseconds 6 0 10 R C 1 1 - v (t) v v (t) 0 C C i (t) dt t v t v 2 1 2 C 1 R C X I t I 0 0 1 C 1 I V V V V V 0 3 1 0 2 1

  5. -1 A Inc. G If Time Marches on why is Time Constant? (2 f )(C) [ ] Model to Memorize M HS M dv 1 2 I (t) = [ , , , , , ] C , , i(t) C dt (a) (b) - (t / ) e i (t) = c (6ma)(0.368) = 2.2ma + 1 = C 4 + ( , i(t)) mA (1.8,2.2) 2 V V V - (t / ) 5 0 2 1 e i (t) = 0 + 1.8ms 10 2 4 6 c milliseconds 6 0 10 - (t / ) Discharging capacitor Energy balance C V R V V R e = 1 2 2 1 1 1 (-1) [ ] [ ] i(t) [ ] [ ] = = (from resistor’s perspective) in out in out - v (t) v (t) v C 0 C 1 i (t) dt i (t) dt t t v t t t t v 2 2 2 1 2 C C 1 1 1 C 1 R X C I t I 1 0 0 C 1 1 I I I 0 V V V V V C 0 0 3 1 1 0 2

  6. -1 A Inc. G If Time Marches on why is Time Constant? (2 f )(C) [ ] Model to Memorize M HS M dv 1 2 I (t) = [ , , , , , ] C , , i(t) C dt (a) (b) - (t / ) e i (t) = c (6ma)(0.368) = 2.2ma + 1 = C 4 + ( , i(t)) mA (1.8,2.2) 2 V V V - (t / ) 5 2 1 0 e i (t) = 0 + 1.8ms 10 2 4 6 c milliseconds 6 0 10 - (t / ) Discharging capacitor Energy balance R R C V R V V e = 2 1 2 1 1 1 1 (-1) [ ] [ ] i(t) [ ] [ ] = = (from resistor’s perspective) in out in out This is a first order differential equation v (t) - v (t) v 0 C C i(t) [ ] + i(t) = 0 + 0 = d d If the time constant, R, and C are known, the Euler numerical method will produce i(t) vs. t plot above. - (t / ) - (t / ) dt dt 1 1 e e i (t) dt i (t) dt t t v t t t t v 2 2 2 1 2 C C 1 1 1 1 C C 1 1 R X C I I t 1 R C 0 0 C 1 1 1 1 I I I I I 0 V V V V V C 0 0 0 0 3 2 1 0 1

  7. -1 A Inc. G If Time Marches on why is Time Constant? (2 f )(C) [ ] Model to Memorize M HS M dv 1 2 I (t) = [ , , , , , ] C , , i(t) C dt (a) (b) - (t / ) e i (t) = c (6ma)(0.368) = 2.2ma + 1 = C 4 + ( , i(t)) mA (1.8,2.2) 2 V V V - (t / ) 5 1 0 2 e i (t) = 0 + 1.8ms 10 2 4 6 c milliseconds 6 0 10 - (t / ) Discharging capacitor Energy balance R R C V V R V R R e = 2 1 2 1 1 1 1 1 1 (-1) [ ] [ ] i(t) [ ] [ ] = = (from resistor’s perspective) in out in out This is a first order differential equation - v (t) v v (t) C 0 C i(t) [ ] + i(t) = 0 + 0 = d d If the time constant, R, and C are known, the Euler numerical method will produce i(t) vs. t plot above. - (t / ) - (t / ) - (t / ) dt dt 1 1 1 e e e i (t) dt i (t) dt t t v t v t t t 2 2 2 1 2 C C 1 1 1 1 C C C 1 1 1 This is always zero when [] term below is zero. - (t / ) R X C I I t e (-1) 1 R C + 0 = 0 0 1 C 1 1 1 I I I I I I I I [ ] 0 + V V V V V e C 0 1 R C = = 0 0 0 0 0 0 0 3 1 1 0 2 R C -(t / ) 1 1 1 C

  8. +1 A Inc. G If Time Marches on why is Time Constant? (2 f )(L) [ ] Model to Memorize [ , , , , , ] , , v(t) L 1 From the Inductor’s perspective; di M V (t) = L 1 M L dt 2 0 -10 +10 (b) (a) 6 0 + 10 V V L R R V 0 L R X t I 1 L 1 V V 0 0

  9. +1 A Inc. G If Time Marches on why is Time Constant? (2 f )(L) [ ] Model to Memorize [ , , , , , ] , , v(t) L 1 From the Inductor’s perspective; di M V (t) = L 1 M L dt 2 0 -10 +10 (b) (a) 6 0 + 10 V V L R R V 0 + L X R I t 1 1 L V V 0 0

  10. +1 A Inc. G If Time Marches on why is Time Constant? (2 f )(L) [ ] Model to Memorize [ , , , , , ] , , v(t) L 1 From the Inductor’s perspective; di M V (t) = L 1 M L dt 2 0 -10 +10 (b) (a) 6 0 + 10 V V L R R V 0 - L X R I t 1 1 L V V 0 0

  11. +1 A A Inc. Inc. G G If Time Marches on why is Time Constant? (2 f )(L) [ ] Model to Memorize di V (t) = L L Voltage vs Time dt = L mv 4 (b) (a) - (t / ) (1.8, 2.2) e V (t)= V L 0 + 2 V V L R R V 0 v (t) + 1.8ms [ , , , , , ] L , , v(t) Time L i (t) dt v t v t 2 2 1 C 1 L X R V t I 1 0 L 1 1 V V 0 0

  12. A A Inc. Inc. G G If Time Marches on why is Time Constant? +1 [ ] (2 f ) (L) Model to Memorize Natural di Response (a) (b) v (t) = L L dt + R - (t / ) 9 e (10mv)(0.368) = 3.7mv V (t) = L i 2 1 V (t) dt = L ( , i(t)) L (3.7, 0.382) i L mv 1 3 1 e - (t / ) = (-1) V L e i (t) = + 1.8ms .4 .8 1.2 L L milliseconds - (t / ) Discharging inductor Energy balance V V L V V R di L R 1 1 L R [ ] [ ] i(t) [ ] [ ] = = (from resistor’s perspective) in out in out dt i (t) [ , , , , , ] L , , v(t) t t t t 2 2 1 1 V R X L t I 1 0 1 1 L I V I 0 V 0 0 0

  13. A Inc. G If Time Marches on why is Time Constant? +1 [ ] (2 f ) (L) Model to Memorize Natural di Response (a) (b) v (t) = L L dt + R - (t / ) 9 e (10mv)(0.368) = 3.7mv V (t) = L i 2 1 V (t) dt = L ( , i(t)) L (3.7, 0.382) i L mv 1 3 1 e - (t / ) = (-1) V L e i (t) = + 1.8ms .4 .8 1.2 L L milliseconds - (t / ) Discharging inductor Energy balance R V V V R L L V di R R L 1 1 1 L R 1 [ ] [ ] i(t) [ ] [ ] = 1 = (from resistor’s perspective) in out in out L dt 1 This is a first order differential equation i (t) [ , , , , , ] L i(t) [ ] , , + i(t) v(t) = 0 + 0 = d d If the time constant, R, and L are known, the Euler numerical method will produce i(t) vs. t plot above. - (t / ) - (t / ) dt dt e e t t t t 2 2 1 1 V X R L t I 1 0 L 1 1 I V I I I 0 V 0 0 0 0 0

  14. A Inc. G If Time Marches on why is Time Constant? +1 [ ] (2 f ) (L) Model to Memorize Natural di Response (a) (b) v (t) = L L dt + R - (t / ) 9 e (10mv)(0.368) = 3.7mv V (t) = L i 2 1 V (t) dt = L ( , i(t)) L (3.7, 0.382) i L mv 1 3 1 e - (t / ) = (-1) V L e i (t) = + 1.8ms .4 .8 1.2 L L milliseconds - (t / ) Discharging inductor Energy balance R R V V V V L L L L R R di R R L 1 1 1 1 1 1 1 R L 1 [ ] [ ] i(t) [ ] [ ] = 1 = (from resistor’s perspective) in out in out L dt 1 This is a first order differential equation i (t) [ , , , , , ] L i(t) [ ] + , , i(t) v(t) = 0 + 0 = d d If the time constant, R, and L are known, the Euler numerical method will produce i(t) vs. t plot above. - (t / ) - (t / ) - (t / ) dt dt -1 -1 e e e - (t / ) t t t t e (-1) 2 2 + 0 = 1 1 This is always zero when [] term below is zero. V R X L t I 1 0 L 1 1 I L V I I I I I I [ ] 0 + V 1 e 0 = = 0 0 0 0 0 0 0 0 -(t / ) RL R 1

  15. Summary - Time Constant A Inc. G +1 [ ] (2 f ) (L) Natural Response (a) (b) [ , , , , , ] , , i(t) + R 9 - (t / ) e i (t) = (10mv)(0.368) = 3.7mv - (t / ) Model to Memorize c e V (t) = L 1 (3.7, 0.382) i = 2 1 mv V (t) dt = C L ( , i(t)) ( , i(t)) L i L 3 1 di V (t) = L L dt + 1.8ms .4 .8 1.2 V V V milliseconds 2 1 0 = L R V V C L R 1 1 (6ma)(0.368) = 2.2ma Model to Memorize 4 (a) (b) mA (1.8,2.2) v I (t) i (t) v (t) v (t) - v (t) [ , , , , , ] L 0 L C C , , C v(t) + 2 + dv V (t) dt i (t) dt i (t) dt v t t v t t i t t v t v i t I (t) = C 1 2 2 2 2 2 1 1 2 2 C C L 1 1 1 1 C dt + 1.8ms 2 4 6 V R L C X R X I t I I t milliseconds 1 0 0 0 C L 1 1 1 1 V I V V V V V V = C 0 0 3 0 1 2 0 1

  16. A Inc. G [ , , , , , ] , , i(t) End of Presentation If Time Marches on why is Time Constant? V V V V V V 0 C R 0 2 1 C R 1 1 v - v (t) (a) (b) (a) (b) [ , , , , , ] 0 C , , v(t) + + R + L R X X R C I I t t 1 0 1 C 1 1 1 L L V V V V V V V 3 1 2 0 0 1 0

  17. = 20 Amperes A Inc. G Natural Model to Memorize Response (a) (b) di v (t) = L L dt + 10 ohm - (t / ) e i (t) = L 15 2 Henry A 9 3 .4 .8 1.2 seconds V V R L I I 0 0 I 0

More Related