310 likes | 674 Views
Te Poutama Tau: He Whakaaturanga mā te Kaiako Te Whakawehe. He aha tēnei mea te whakawehe?. Ko te whakawehenga he wāwāhi i tētahi mea ki ētahi rōpū ōrite. Hei tauira: Ko te wāwāhi i tētahi huinga: 6 ÷ 3 = 2. He aha tēnei mea te whakawehe?. Ko te wāwāhi i tētahi inenga: 600mm ÷ 3 = 200mm.
E N D
Te Poutama Tau: He Whakaaturanga mā te Kaiako Te Whakawehe
He aha tēnei mea te whakawehe? • Ko te whakawehenga he wāwāhi i tētahi mea ki ētahi rōpū ōrite. Hei tauira: • Ko te wāwāhi i tētahi huinga: • 6 ÷ 3 = 2
He aha tēnei mea te whakawehe? Ko te wāwāhi i tētahi inenga: 600mm ÷ 3 = 200mm
He aha tēnei mea te whakawehe? Ko te wāwāhi i tētahi āhua: 1 ÷ = 3
He aha tēnei mea te whakawehe? Ko te ÷ hei tohu i te whakawehenga. Pēhea te whakahua tika i te whakawehenga nei: 6 ÷ 3 = 2? He tauira ēnei nō te papakupu He Pātaka Kupu: Whakawehea te 21 ki te 3, ka puta ko te 7. Wehea te 12 ki te 4, ka 3.
He aha tēnei mea te whakawehe? He aha ngā whakahuatanga o ngā rerenga kōrero whakawehe e rāngona ana i tōu kura? Koia nei ētahi anō mō te 6 ÷ 3 = 2: E 6, whakawehea ki te 3, ka 2. Ko te whakawehenga o te 6 ki te 3, ka 2.
Te whakawehe me te whakarea E tino hono ana te whakawehe me te whakarea. He kōaro tētahi i tētahi: 3 x 4 = 12 ↔ 12 ÷ 4 = 3 He pērā anō te tāpiri me te tango: 3 + 4 = 7 ↔ 7 – 4 = 3
Te whakawehe me te whakarea Ko te huri i te whakawehenga hei whakareatanga, tētahi rautaki matua hei whakaoti whakareatanga. Hei tauira: 15 ÷ 3 = □ (Whakawehea te 15 ki te 3, ka hia?) Ka huri kōaro te whakawehenga hei whakareatanga: 3 x □ = 15 (E hia ngā 3 kei roto i te 15)
Ngā momo whakawehenga e rua E rua ngā momo whakawehenga: ko te tohatoha ko te whakarōpū
Te whakawehenga tohatoha I tēnei momo whakawehenga e mōhiotia ana te maha o ngā rōpū hei tohatoha i ngā mea o tētahi huinga. Hei tauira: E 8 ngā āporo hei tohatoha ki ētahi rourou e 4. Kia hia ngā āporo ki ia rourou?
Te whakawehenga whakarōpū I tēnei momo whakawehenga e mōhiotia ana te maha o ngā mea kei ia rōpū. Hei tauira: E 8 ngā āporo hei whakarōpū kia rua ngā āporo ki ia rourou.
Ngā kupu matua He aha ngā kupu matua e toru hei whakaahua i tēnei mea te whakawehe? tohatoha whakarōpū rōpū ōrite Kia kaha te whakamahi i ēnei kupu i te wā e whakaaturia ana te whakawehenga ki ngā rauemi me ngā pikitia e hāngai ana.
Te whakaako i te whakawehenga Ki tōu whakaaro ko tēhea taumata o te kura e tika ana kia tīmata te whakaako i te whakawehe?
Te whakaako i te whakawehenga Kāore he raruraru o te āta whāngai i te tikanga o te whakawehe (me ngā kupu matua ‘tohatoha’, ‘whakarōpū’ me ‘rōpū ōrite’) ki ā tātou tamariki i te taumata 1 tonu o te kura. Ko te mea nui kia mōhio rātou ki te tatau pānga tahi. Ka taea ngā rautaki tatau hei whakaoti whakawehenga.
Te whakaako i te whakawehenga Hei tauira tēnei o tētahi rautaki māmā hei whakaoti whakawehenga: 12 ngā porotiti ka whakawehea kia 3 ngā porotiti ki ia rōpū. Ka hia ngā rōpū? Mā te tatau i ngā porotiti:
Te whakaako i te whakawehenga Hei tauira tēnei o tētahi rautaki māmā hei whakaoti whakawehenga: 12 ngā porotiti ka whakawehea kia 3 ngā porotiti ki ia rōpū. Ka hia ngā rōpū? Mā te tāpiritanga tāruarua: 3 + 3 + 3 + 3 = 12 Mā te tatau māwhitiwhiti: 3, 6, 9, 12 Mā te whakamahi tau rearua: 12 = 6 + 6 = 3 + 3 + 3 + 3
Te hanga o te whakawehenga E toru ngā tau o tētahi whakareatanga, o tētahi whakawehenga rānei:
Te hanga o te whakawehenga Ko te whakaoti whakawehenga, he whiriwhiri i te maha o ngā rōpū, he whiriwhiri rānei i te maha o ngā mea kei roto i ia rōpū. Hei tauira: 12 ngā porotiti ka wehea kia 3 ngā rōpū ōrite. Ka hia ngā porotiti ki ia rōpū? (12 ÷ 3 = 4) 12 ngā porotiti ka tohaina kia 4 ngā porotiti ki ia rōpū ōrite. Ka hia ngā rōpū? (12 ÷ 4 = 3)
Ngā horopaki mō te whakawehenga E 3 ngā horopaki matua mō te whakawehenga: ko te rōpū ōrite. ko te pāpātanga ko te whakatairite
He horopaki mō te whakawehenga:te rōpū ōrite Tuhia te whārite e hāngai ana ki ia rapanga, ka whakaaro ai i ētahi rautaki e rua hei whakaoti: 42 ngā tamariki ka wehea ki ētahi tīma e 7. Ka hia ngā tamariki ki ia tīma? 42 ngā tamariki ka wehea kia 6 ngā tamariki ki ia tīma. Ka hia ngā tīma?
He horopaki mō te whakawehenga:te pāpātanga Tuhia te whārite e hāngai ana ki ia rapanga, ka whakaaro ai i ētahi rautaki e rua hei whakaoti: E 4 haora te mahi a Hinewai, ka riro i a ia te $52. E hia tana utu ā-haora? $13 te utu ā-haora i te mahi a Hinewai. Ka hia haora ia e mahi ana kia riro i a ia te $52?
He horopaki mō te whakawehenga:te whakatairite Tuhia te whārite e hāngai ana ki ia rapanga, ka whakaaro ai i ētahi rautaki e rua hei whakaoti: E 5 te whakareatanga ake o ngā māpere a Teone i ngā māpere a Wiremu. Mēnā e 35 ngā māpere a Teone, e hia ngā māpere a Wiremu? E 35 ngā māpere a Teone, e 7 ngā māpere a Wiremu. E hia te whakareatanga ake o ngā māpere a Teone i ngā māpere a Wiremu?
He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki ēnei rautaki, me te whakaatu i ngā rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te tāpiri tāruarua me te tatau māwhitiwhiti: 21 ÷ 3 = □ 3 + 3 + 3 + 3 + 3 + 3 = 21 3, 6, 9, 12, 15, 18, 21 te whakamahi tau rearua 24 ÷ 4 = □ 12 + 12 = 24 6 + 6 + 6 + 6 = 24
He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te huri kōaro hei whakareatanga me te whakamahi meka mōhio: 56 ÷ 8 = □ ↔ 8 x □ = 56 (whakareatia te 8 ki te aha ka 56)
He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te wāwāhi uara tū me te tau māmā: 72 ÷ 3 = (60 ÷ 3) + (12 ÷ 3) = 20 + 4 = 24
He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te whakaawhiwhi me te tau māmā: 97 ÷ 5 = □ ↔ 100 ÷ 5 = 20, nō reira 97 ÷ 5 = 19 me te 2 e toe ana
He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te huri hei whakareatanga mē te wāwāhi hei tau māmā: 14.4 ÷ 4 = □ ↔ 4 x □ = 14.4 4 x 3 = 12 4 x 0.5 = 2 4 x 0.1 = 0.4 Nō reira: 4 x 3.6 = 14.4
Te whakawehenga me te hautau E tino hono ana te whakawehe me te hautau. Ko te tohu hautau, he tohu anō mō te whakawehe: 12 ÷ 3 =
Te whakawehenga me te hautau He ōrite te whiriwhiri i te hautanga o tētahi tau ki te whakawehenga. Tuhia he pikitia hei whakaatu i ēnei tauira: o te 12 = 12 ÷ 3 = 4 o te 12 = (12 ÷ 3) x 2 = 8
Hei whakarāpopoto Koia nei ngā akoranga matua. Ka taea e koe ēnei akoranga matua te whakamārama? Ko te whakawehenga te wāwāhitanga o tētahi mea ki ōna anō rōpū ōrite. E tino hono ana te whakawehe me te whakarea. E rua ngā tikanga matua o te whakawehe: ko te tohatoha ko te whakarōpū He maha ngā whakahuatanga tika o te rerenga kōrero whakawehe.
Hei whakarāpopoto He maha ngā rautaki hei whakaoti whakawehenga. E toru ngā horopaki matua mō te whakawehe: Ko te rōpū ōrite Ko te pāpātanga Ko te whakatairite E tino hono ana te whakawehe me te hautau.