1 / 31

Te Poutama Tau: He Whakaaturanga mā te Kaiako Te Whakawehe

Te Poutama Tau: He Whakaaturanga mā te Kaiako Te Whakawehe. He aha tēnei mea te whakawehe?. Ko te whakawehenga he wāwāhi i tētahi mea ki ētahi rōpū ōrite. Hei tauira: Ko te wāwāhi i tētahi huinga: 6 ÷ 3 = 2. He aha tēnei mea te whakawehe?. Ko te wāwāhi i tētahi inenga: 600mm ÷ 3 = 200mm.

cale
Download Presentation

Te Poutama Tau: He Whakaaturanga mā te Kaiako Te Whakawehe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Te Poutama Tau: He Whakaaturanga mā te Kaiako Te Whakawehe

  2. He aha tēnei mea te whakawehe? • Ko te whakawehenga he wāwāhi i tētahi mea ki ētahi rōpū ōrite. Hei tauira: • Ko te wāwāhi i tētahi huinga: • 6 ÷ 3 = 2

  3. He aha tēnei mea te whakawehe? Ko te wāwāhi i tētahi inenga: 600mm ÷ 3 = 200mm

  4. He aha tēnei mea te whakawehe? Ko te wāwāhi i tētahi āhua: 1 ÷ = 3

  5. He aha tēnei mea te whakawehe? Ko te ÷ hei tohu i te whakawehenga. Pēhea te whakahua tika i te whakawehenga nei: 6 ÷ 3 = 2? He tauira ēnei nō te papakupu He Pātaka Kupu: Whakawehea te 21 ki te 3, ka puta ko te 7. Wehea te 12 ki te 4, ka 3.

  6. He aha tēnei mea te whakawehe? He aha ngā whakahuatanga o ngā rerenga kōrero whakawehe e rāngona ana i tōu kura? Koia nei ētahi anō mō te 6 ÷ 3 = 2: E 6, whakawehea ki te 3, ka 2. Ko te whakawehenga o te 6 ki te 3, ka 2.

  7. Te whakawehe me te whakarea E tino hono ana te whakawehe me te whakarea. He kōaro tētahi i tētahi: 3 x 4 = 12 ↔ 12 ÷ 4 = 3 He pērā anō te tāpiri me te tango: 3 + 4 = 7 ↔ 7 – 4 = 3

  8. Te whakawehe me te whakarea Ko te huri i te whakawehenga hei whakareatanga, tētahi rautaki matua hei whakaoti whakareatanga. Hei tauira: 15 ÷ 3 = □ (Whakawehea te 15 ki te 3, ka hia?) Ka huri kōaro te whakawehenga hei whakareatanga: 3 x □ = 15 (E hia ngā 3 kei roto i te 15)

  9. Ngā momo whakawehenga e rua E rua ngā momo whakawehenga: ko te tohatoha ko te whakarōpū

  10. Te whakawehenga tohatoha I tēnei momo whakawehenga e mōhiotia ana te maha o ngā rōpū hei tohatoha i ngā mea o tētahi huinga. Hei tauira: E 8 ngā āporo hei tohatoha ki ētahi rourou e 4. Kia hia ngā āporo ki ia rourou?

  11. Te whakawehenga whakarōpū I tēnei momo whakawehenga e mōhiotia ana te maha o ngā mea kei ia rōpū. Hei tauira: E 8 ngā āporo hei whakarōpū kia rua ngā āporo ki ia rourou.

  12. Ngā kupu matua He aha ngā kupu matua e toru hei whakaahua i tēnei mea te whakawehe? tohatoha whakarōpū rōpū ōrite Kia kaha te whakamahi i ēnei kupu i te wā e whakaaturia ana te whakawehenga ki ngā rauemi me ngā pikitia e hāngai ana.

  13. Te whakaako i te whakawehenga Ki tōu whakaaro ko tēhea taumata o te kura e tika ana kia tīmata te whakaako i te whakawehe?

  14. Te whakaako i te whakawehenga Kāore he raruraru o te āta whāngai i te tikanga o te whakawehe (me ngā kupu matua ‘tohatoha’, ‘whakarōpū’ me ‘rōpū ōrite’) ki ā tātou tamariki i te taumata 1 tonu o te kura. Ko te mea nui kia mōhio rātou ki te tatau pānga tahi. Ka taea ngā rautaki tatau hei whakaoti whakawehenga.

  15. Te whakaako i te whakawehenga Hei tauira tēnei o tētahi rautaki māmā hei whakaoti whakawehenga: 12 ngā porotiti ka whakawehea kia 3 ngā porotiti ki ia rōpū. Ka hia ngā rōpū? Mā te tatau i ngā porotiti:

  16. Te whakaako i te whakawehenga Hei tauira tēnei o tētahi rautaki māmā hei whakaoti whakawehenga: 12 ngā porotiti ka whakawehea kia 3 ngā porotiti ki ia rōpū. Ka hia ngā rōpū? Mā te tāpiritanga tāruarua: 3 + 3 + 3 + 3 = 12 Mā te tatau māwhitiwhiti: 3, 6, 9, 12 Mā te whakamahi tau rearua: 12 = 6 + 6 = 3 + 3 + 3 + 3

  17. Te hanga o te whakawehenga E toru ngā tau o tētahi whakareatanga, o tētahi whakawehenga rānei:

  18. Te hanga o te whakawehenga Ko te whakaoti whakawehenga, he whiriwhiri i te maha o ngā rōpū, he whiriwhiri rānei i te maha o ngā mea kei roto i ia rōpū. Hei tauira: 12 ngā porotiti ka wehea kia 3 ngā rōpū ōrite. Ka hia ngā porotiti ki ia rōpū? (12 ÷ 3 = 4) 12 ngā porotiti ka tohaina kia 4 ngā porotiti ki ia rōpū ōrite. Ka hia ngā rōpū? (12 ÷ 4 = 3)

  19. Ngā horopaki mō te whakawehenga E 3 ngā horopaki matua mō te whakawehenga: ko te rōpū ōrite. ko te pāpātanga ko te whakatairite

  20. He horopaki mō te whakawehenga:te rōpū ōrite Tuhia te whārite e hāngai ana ki ia rapanga, ka whakaaro ai i ētahi rautaki e rua hei whakaoti: 42 ngā tamariki ka wehea ki ētahi tīma e 7. Ka hia ngā tamariki ki ia tīma? 42 ngā tamariki ka wehea kia 6 ngā tamariki ki ia tīma. Ka hia ngā tīma?

  21. He horopaki mō te whakawehenga:te pāpātanga Tuhia te whārite e hāngai ana ki ia rapanga, ka whakaaro ai i ētahi rautaki e rua hei whakaoti: E 4 haora te mahi a Hinewai, ka riro i a ia te $52. E hia tana utu ā-haora? $13 te utu ā-haora i te mahi a Hinewai. Ka hia haora ia e mahi ana kia riro i a ia te $52?

  22. He horopaki mō te whakawehenga:te whakatairite Tuhia te whārite e hāngai ana ki ia rapanga, ka whakaaro ai i ētahi rautaki e rua hei whakaoti: E 5 te whakareatanga ake o ngā māpere a Teone i ngā māpere a Wiremu. Mēnā e 35 ngā māpere a Teone, e hia ngā māpere a Wiremu? E 35 ngā māpere a Teone, e 7 ngā māpere a Wiremu. E hia te whakareatanga ake o ngā māpere a Teone i ngā māpere a Wiremu?

  23. He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki ēnei rautaki, me te whakaatu i ngā rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te tāpiri tāruarua me te tatau māwhitiwhiti: 21 ÷ 3 = □ 3 + 3 + 3 + 3 + 3 + 3 = 21 3, 6, 9, 12, 15, 18, 21 te whakamahi tau rearua 24 ÷ 4 = □ 12 + 12 = 24 6 + 6 + 6 + 6 = 24

  24. He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te huri kōaro hei whakareatanga me te whakamahi meka mōhio: 56 ÷ 8 = □ ↔ 8 x □ = 56 (whakareatia te 8 ki te aha ka 56)

  25. He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te wāwāhi uara tū me te tau māmā: 72 ÷ 3 = (60 ÷ 3) + (12 ÷ 3) = 20 + 4 = 24

  26. He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te whakaawhiwhi me te tau māmā: 97 ÷ 5 = □ ↔ 100 ÷ 5 = 20, nō reira 97 ÷ 5 = 19 me te 2 e toe ana

  27. He rautaki wāwāhi tau hei whakaoti whakawehenga Āta whakaarohia te kaupae o Te Mahere Tau e hāngai ana ki tēnei rautaki, me te whakaatu i te rautaki ki ngā rauemi e hāngai ana, ki te pikitia rānei: te huri hei whakareatanga mē te wāwāhi hei tau māmā: 14.4 ÷ 4 = □ ↔ 4 x □ = 14.4 4 x 3 = 12 4 x 0.5 = 2 4 x 0.1 = 0.4 Nō reira: 4 x 3.6 = 14.4

  28. Te whakawehenga me te hautau E tino hono ana te whakawehe me te hautau. Ko te tohu hautau, he tohu anō mō te whakawehe: 12 ÷ 3 =

  29. Te whakawehenga me te hautau He ōrite te whiriwhiri i te hautanga o tētahi tau ki te whakawehenga. Tuhia he pikitia hei whakaatu i ēnei tauira: o te 12 = 12 ÷ 3 = 4 o te 12 = (12 ÷ 3) x 2 = 8

  30. Hei whakarāpopoto Koia nei ngā akoranga matua. Ka taea e koe ēnei akoranga matua te whakamārama? Ko te whakawehenga te wāwāhitanga o tētahi mea ki ōna anō rōpū ōrite. E tino hono ana te whakawehe me te whakarea. E rua ngā tikanga matua o te whakawehe: ko te tohatoha ko te whakarōpū He maha ngā whakahuatanga tika o te rerenga kōrero whakawehe.

  31. Hei whakarāpopoto He maha ngā rautaki hei whakaoti whakawehenga. E toru ngā horopaki matua mō te whakawehe: Ko te rōpū ōrite Ko te pāpātanga Ko te whakatairite E tino hono ana te whakawehe me te hautau.

More Related