1 / 23

ECE 448 Lecture 1 6

ECE 448 Lecture 1 6. Bit Counter Shift-and-Add Multiplier. Required reading. S. Brown and Z. Vranesic , Fundamentals of Digital Logic with VHDL Design Chapter 10.2.1 , A Bit-Counting-Circuit Chapter 10.2.2, ASM Chart Implied Timing Information

calla
Download Presentation

ECE 448 Lecture 1 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECE 448 Lecture 16 Bit CounterShift-and-Add Multiplier ECE 448 – FPGA and ASIC Design with VHDL

  2. Required reading • S. Brown and Z. Vranesic,Fundamentals of Digital Logic with VHDL Design • Chapter 10.2.1, A Bit-Counting-Circuit • Chapter 10.2.2, ASM Chart Implied Timing • Information • Chapter 10.2.3, Shift-and-Add Multiplier ECE 448 – FPGA and ASIC Design with VHDL

  3. Bit Counter ECE 448 – FPGA and ASIC Design with VHDL

  4. Pseudo-code for the bit counter B = 0; while A≠0 do if a0 = 1 then B = B + 1; end if; Right-shift A; end while ; ECE 448 – FPGA and ASIC Design with VHDL

  5. ASM chart of the bit counter Reset S1 ¬ B 0 Load A 0 0 1 s s 1 S2 S3 Shift right A Done 1 ¬ A = 0 ? B B + 1 0 0 a 0 1 ECE 448 – FPGA and ASIC Design with VHDL

  6. Expected behavior of the bit counter ECE 448 – FPGA and ASIC Design with VHDL

  7. Datapath of the bit counter 0 Data log n n 2 w 0 LB L L Counter LA EB E Shift E EA Clock log n A 2 n z B a 0 ECE 448 – FPGA and ASIC Design with VHDL

  8. ASM chart for the bit counter control circuit ECE 448 – FPGA and ASIC Design with VHDL

  9. VHDL code of the bit counter (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; LIBRARY work ; USE work.components.shiftrne ; ENTITY bitcount IS PORT(Clock, Resetn : IN STD_LOGIC ; LA, s : IN STD_LOGIC ; Data : IN STD_LOGIC_VECTOR(7 DOWNTO 0) ; B : BUFFER INTEGER RANGE 0 to 8 ; Done : OUT STD_LOGIC ) ; END bitcount ; ECE 448 – FPGA and ASIC Design with VHDL

  10. VHDL code of the bit counter (2) ARCHITECTURE Behavior OF bitcount IS TYPE State_type IS ( S1, S2, S3 ) ; SIGNAL y : State_type ; SIGNAL A : STD_LOGIC_VECTOR(7 DOWNTO 0) ; SIGNAL z, EA, LB, EB, low : STD_LOGIC ; BEGIN FSM_transitions: PROCESS ( Resetn, Clock ) BEGIN IF Resetn = '0' THEN y <= S1 ; ELSIF (Clock'EVENT AND Clock = '1') THEN CASE y IS WHEN S1 => IF s = '0' THEN y <= S1 ; ELSE y <= S2 ; END IF ; WHEN S2 => IF z = '0' THEN y <= S2 ; ELSE y <= S3 ; END IF ; WHEN S3 => IF s = '1' THEN y <= S3 ; ELSE y <= S1 ; END IF ; END CASE ; END IF ; END PROCESS ; ECE 448 – FPGA and ASIC Design with VHDL

  11. VHDL code of the bit counter (3) FSM_outputs: PROCESS ( y, A(0) ) BEGIN EA <= '0' ; LB <= '0' ; EB <= '0' ; Done <= '0' ; CASE y IS WHEN S1 => LB <= '1' WHEN S2 => EA <= '1' ; IF A(0) = '1' THEN EB <= '1' ; ELSE EB <= '0' ; END IF ; WHEN S3 => Done <= '1' ; END CASE ; END PROCESS ; ECE 448 – FPGA and ASIC Design with VHDL

  12. VHDL code of the bit counter (4) -- The datapath circuit is described below upcount: PROCESS ( Resetn, Clock ) BEGIN IF Resetn = '0' THEN B <= 0 ; ELSIF (Clock'EVENT AND Clock = '1') THEN IF LB = '1' THEN B <= 0 ; ELSEIF EB = '1' THEN B <= B + 1 ; END IF ; END IF; END PROCESS; ECE 448 – FPGA and ASIC Design with VHDL

  13. VHDL code of the bit counter (5) low <= '0' ; ShiftA: shiftrne GENERIC MAP ( N => 8 ) PORT MAP ( Data, LA, EA, low, Clock, A ) ; z <= '1' WHEN A = "00000000" ELSE '0' ; END Behavior ; ECE 448 – FPGA and ASIC Design with VHDL

  14. Shift-and-Add Multiplier ECE 448 – FPGA and ASIC Design with VHDL

  15. An algorithm for multiplication Decimal Binary 13 1 1 0 1 Multiplicand 11 1 0 1 1 Multiplier ´ ´ 13 1101 13 1 1 0 1 0 0 0 0 143 1 1 0 1 1 0 001111 Product (a) Manual method P = 0 ; – i = 0 n 1 for to do b = 1 if then i P = P + A ; end if; A Left-shift ; end for; (b) Pseudo-code ECE 448 – FPGA and ASIC Design with VHDL

  16. ASM chart for the multiplier Reset S1 ¬ P 0 Load A Load B 0 0 1 s s 1 S2 S3 Shift left A , Shift right B Done 1 ¬ B = 0 ? P P + A 0 0 b 0 1 ECE 448 – FPGA and ASIC Design with VHDL

  17. Expected behavior of the multiplier ECE 448 – FPGA and ASIC Design with VHDL

  18. Datapath for the multiplier LA 0 DataA LB DataB n n n L L Shift-left Shift-right EA EB E E register register A B Clock n 2n + z b Sum 0 0 2n 2n 1 0 Psel 2n DataP EP E Register 2n P ECE 448 – FPGA and ASIC Design with VHDL

  19. ASM chart for the multiplier control circuit ECE 448 – FPGA and ASIC Design with VHDL

  20. VHDL code of multiplier circuit (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; USE ieee.std_logic_unsigned.all ; USE work.components.all ; ENTITY multiply IS GENERIC ( N : INTEGER := 8; NN : INTEGER := 16 ) ; PORT ( Clock : IN STD_LOGIC ; Resetn : IN STD_LOGIC ; LA, LB, s : IN STD_LOGIC ; DataA : IN STD_LOGIC_VECTOR(N–1 DOWNTO 0) ; DataB : IN STD_LOGIC_VECTOR(N–1 DOWNTO 0) ; P : BUFFER STD_LOGIC_VECTOR(N–1 DOWNTO 0) ; Done : OUT STD_LOGIC ) ; END multiply ; ECE 448 – FPGA and ASIC Design with VHDL

  21. VHDL code of multiplier circuit (2) ARCHITECTURE Behavior OF multiply IS TYPE State_type IS ( S1, S2, S3 ) ; SIGNAL y : State_type ; SIGNAL Psel, z, EA, EB, EP, Zero : STD_LOGIC ; SIGNAL B, N_Zeros : STD_LOGIC_VECTOR(N–1 DOWNTO 0) ; SIGNAL A, Ain, DataP, Sum : STD_LOGIC_VECTOR(NN–1 DOWNTO 0) ; BEGIN FSM_transitions: PROCESS ( Resetn, Clock ) BEGIN IF Resetn = '0’ THEN y <= S1 ; ELSIF (Clock'EVENT AND Clock = '1') THEN CASE y IS WHEN S1 => IF s = '0' THEN y <= S1 ; ELSE y <= S2 ; END IF ; WHEN S2 => IF z = '0' THEN y <= S2 ; ELSE y <= S3 ; END IF ; WHEN S3 => IF s = '1' THEN y <= S3 ; ELSE y <= S1 ; END IF ; END CASE ; END IF ; END PROCESS ; ECE 448 – FPGA and ASIC Design with VHDL

  22. VHDL code of multiplier circuit (3) FSM_outputs: PROCESS ( y, s, B(0) ) BEGIN EP <= '0' ; EA <= '0' ; EB <= '0' ; Done <= '0' ; Psel <= '0'; CASE y IS WHEN S1 => EP <= '1‘ ; WHEN S2 => EA <= '1' ; EB <= '1' ; Psel <= '1‘ ; IF B(0) = '1' THEN EP <= '1' ; ELSE EP <= '0' ; END IF ; WHEN S3 => Done <= '1‘ ; END CASE ; END PROCESS ; ECE 448 – FPGA and ASIC Design with VHDL

  23. VHDL code of multiplier circuit (4) - - Define the datapath circuit Zero <= '0' ; N_Zeros <= (OTHERS => '0' ) ; Ain <= N_Zeros & DataA ; ShiftA: shiftlne GENERIC MAP ( N => NN ) PORT MAP ( Ain, LA, EA, Zero, Clock, A ) ; ShiftB: shiftrne GENERIC MAP ( N => N ) PORT MAP ( DataB, LB, EB, Zero, Clock, B ) ; z <= '1' WHEN B = N_Zeros ELSE '0' ; Sum <= A + P ; - - Define the 2n 2-to-1 multiplexers for DataP GenMUX: FOR i IN 0 TO NN–1 GENERATE Muxi: mux2to1 PORT MAP ( Zero, Sum(i), Psel, DataP(i) ) ; END GENERATE; RegP: regne GENERIC MAP ( N => NN ) PORT MAP ( DataP, Resetn, EP, Clock, P ) ; END Behavior ; ECE 448 – FPGA and ASIC Design with VHDL

More Related