240 likes | 558 Views
UNIT STEP FUNCTION. Example :. Solution:. Ex: Write the following function in terms of the unit step function. Ex 1 :. Ex 2 :. Ex 3 :. = ?. Proof: L(f(t-a)u(t-a)}=e -as F(s) (1) Let f(t-a)=g(t) then f(t)=g(t+a), put in (1) L{g(t)u(t-a)}=e -as L{g(t+a)}, change from g to f simply
E N D
Example: Solution:
Ex: Write the following function in terms of the unit step function
Ex1: Ex2: Ex3: = ?
Proof: L(f(t-a)u(t-a)}=e-asF(s) (1) Let f(t-a)=g(t) then f(t)=g(t+a), put in (1) L{g(t)u(t-a)}=e-asL{g(t+a)}, change from g to f simply L{f(t)u(t-a)}=e-asL{f(t+a)}, • Ex: Show that L{ f(t)u(t-a) }=e-asL{ f(t+a) } Ex:
Impulse Function Define the function fk (t-a) as In terms of unit step functions Dirac delta function or unit impulse function
Mathematical expression for the unit impulse function Some properties of the unit impulse function a) b) c)
y(0)=0, y’(0)=0 • Ex: Solve Solution: Taking the laplace transform of both sides
Convolution • Convolution of f(t) and g(t), h(t) is defined as: Convolution Theorem Let H(s), F(s), and G(s) denote the laplace transforms of h(t), f(t), and g(t). If h is the convolution of f and g, h=f* g then H(s)=F(s)G(s) h(t)=L-1{F(s)G(s)}
Page 264a Continued
Page 264b Continued
Pages 265-267a Continued
Pages 265-267b Continued
Pages 265-267c Continued
Pages 265-267d Continued
Pages 265-267e Continued