1 / 8

Mineração de dados

Mineração de dados. Ferramenta WEKA. WEKA. ferramenta para data mining com muitos algoritmos implementados. Desenvolvida pela Universidade de Waikato, NZ Muito usada nos meios acadêmicos, free Site: http://www.cs.waikato.ac.nz/ml/weka/

callum
Download Presentation

Mineração de dados

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mineração de dados Ferramenta WEKA

  2. WEKA • ferramenta para data mining com muitos algoritmos implementados. • Desenvolvida pela Universidade de Waikato, NZ • Muito usada nos meios acadêmicos, free • Site: http://www.cs.waikato.ac.nz/ml/weka/ • Apresentação: http://prdownloads.sourceforge.net/weka/Weka_a_tool_for_exploratory_data_mining.ppt

  3. Weka Explorer

  4. Após abrir arquivo:

  5. Aba de classificação

  6. Exemplo de saída

  7. Para aumentar a memória disponível C:\weka>java -jar -Xmx1000M weka.jar

  8. Salvar e utilizar modelo de classificação • Salvar: • A trained model can be saved like this, e.g., J48:train your model on the training data /some/where/train.arff • right-click in the Results list on the item which model you want to save • select Save model and save it to /other/place/j48.model • Carregarload your test data /some/where/test.arff via the Supplied test set button • right-click in the Results list, select Load model and choose /other/place/j48.model • select Re-evaluate model on current test set

More Related