1 / 58

Sensitivity Analysis in Bayesian Networks

Sensitivity Analysis in Bayesian Networks. Adnan Darwiche Computer Science Department http://www.cs.ucla.edu/~darwiche. How will this parameter change impact the value of an arbitrary query Pr(y|e)?. Ex: How will this parameter change affect the query Pr(BP = Low | HR = Low)?.

calum
Download Presentation

Sensitivity Analysis in Bayesian Networks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sensitivity Analysis inBayesian Networks Adnan Darwiche Computer Science Department http://www.cs.ucla.edu/~darwiche A. Darwiche

  2. A. Darwiche

  3. A. Darwiche

  4. How will this parameter change impact the value of an arbitrary query Pr(y|e)? Ex: How will this parameter change affect the query Pr(BP = Low | HR = Low)? A. Darwiche

  5. Now Pr(BP = Low | HR = Low) = 0.69, but experts believe it should be >= 0.75. How do we efficiently identify minimal parameter changes that can help us satisfy this query constraint? A. Darwiche

  6. A. Darwiche

  7. How do we choose among these candidate parameter changes? How do we measure and quantify change? Absolute? Relative? Or something else? A. Darwiche

  8. Naïve Bayes classifier Class variable C Attributes E A. Darwiche

  9. System Schematic .99 T .999 P .99 R R R .995 S S S 1 2 3 P: A power supply for whole system T: Transmitter: generates to bus (generates no data when faulty) R: Receiver: receives data if available on bus S: Sensor: reflects status of data on receiver (fails low) Reliability of each component is shown next to it A. Darwiche

  10. A. Darwiche

  11. A. Darwiche

  12. A. Darwiche

  13. Now Pr(BP = Low | HR = Low) = 0.69, but experts believe it should be >= 0.75. How do we efficiently identify minimal parameter changes that can help us satisfy this query constraint? A. Darwiche

  14. From global to local belief change • Goal: for each network parameter qx|u, compute the minimal amount of change that can enforce query constraints such as: • Pr(y|e) ³ e. • Pr(y|e) – Pr(z|e) ³ e. • Pr(y|e) / Pr(z|e) ³ e. A. Darwiche

  15. Computing the partial derivative • For each network parameter qx|u, we introduce a meta parameter tx|u, such that: • Our procedure requires us to first compute the partial derivative ¶ Pr(e) / ¶tx|u: A. Darwiche

  16. Parameter changes • Result: to ensure constraint Pr’(y|e) ³ e, we need to change the meta parameter tx|u by dsuch that: The solution is either d q or d³ q. If the change is invalid, the parameter is irrelevant. We have to compute the solution of d for every parameter in the Bayesian network. A. Darwiche

  17. Complexity • Time complexity: O(n 2w), where n is the number of variables, and w is the treewidth. • This time complexity is the same as performing inference to find Pr(e), the simplest query possible. • Therefore, this procedure is very efficient, since we are not paying any penalty by computing the partial derivatives. A. Darwiche

  18. Reasoning about Information • Understand the impact of new information on situation assessment and decision making • What new evidence would it take, and how reliable should it be, to confirm a particular hypothesis? A. Darwiche

  19. False positive is 10% False negative is 30% A. Darwiche

  20. A. Darwiche

  21. A. Darwiche

  22. Need probability of pregnancy to be <= 5% given three tests are negative Get a better scanning test: false negative from 10% to 4.6% Other tests irrelevant! A. Darwiche

  23. Current Work… • Multiple parameters: • Same CPTs • Multiple CPTs • Multiple constraints A. Darwiche

  24. How will this parameter change impact the value of an arbitrary query Pr(y|e)? A. Darwiche

  25. Bounding the partial derivative Key result: the network-independent bound on the partial derivative: A. Darwiche

  26. Plot of the bound A. Darwiche

  27. Bounding query change due to infinitesimal parameter change • We apply an infinitesimal change Dtx|u to the meta parameter tx|u, leading to a change of D Pr(y|e) (we assume tx|u£ 0.5). • Result: the relative change in the query Pr(y|e) is at most double the relative change in the meta parameter tx|u: A. Darwiche

  28. Bounding query change due to arbitrary parameter change If the change in x|u is positive: If the change in x|u is negative: Combining both results, we have: A. Darwiche

  29. = false = true Bounding query change: example Pr(fire | e) = 0.029 Pr’(fire | e) = ? Pr’(fire | e) = [0.016, 0.053] Exact value: 0.021 A. Darwiche

  30. Permissible changes for Pr(x|u) to ensure robustness Pr(y|e) = 0.9 • The graphs analytically show that the permissible changes are smaller for non-extreme queries. • Moreover, we can afford more absolute changes for non-extreme parameters. Pr(y|e) = 0.6 A. Darwiche

  31. A probabilistic distance measure D(Pr, Pr’) satisfies the three properties of distance: positiveness, symmetry, and the triangle inequality. A. Darwiche

  32. max Pr’(w) / Pr(w) min Pr’(w) / Pr(w) A B C Pr’(A,B,C) Pr’(w) / Pr(w) Pr(A,B,C) a b c 0.10 0.20 2.00 a b c 0.20 0.30 1.50 a b c 0.25 0.10 0.40 a b c 0.05 0.05 1.00 a b c 0.05 0.10 2.00 a b c 0.10 0.05 0.50 a b c 0.10 0.10 1.00 a b c 0.15 0.10 0.67 A. Darwiche

  33. Distance Properties Measure satisfies properties of distance: • Positiveness:D(Pr, Pr’) >= 0, and D(Pr, Pr’) = 0 iff Pr = Pr’ • Symmetry:D(Pr, Pr’) = D(Pr’, Pr) • Triangle inequality:D(Pr, Pr’) + D(Pr’, Pr’’) >= D(Pr, Pr’’) A. Darwiche

  34. Significance of distance measure • Let: • Pr and Pr’ be two distributions. •  and  be any two events. • Odds of  |  under Pr: O( | ). • Odds of  |  under Pr’: O’( | ). • Key result: we have the following tight bound: A. Darwiche

  35. Bounding belief change • Given Pr and Pr’: • p = Pr( | ) • d = D(Pr, Pr’) • What can we say about Pr’( | )? A. Darwiche

  36. Bounding belief change d = 0.1 d = 1 A. Darwiche

  37. Comparison with KL-divergence • KL-divergence is incomparable with our distance measure. • We cannot use KL-divergence to guarantee a similar bound provided by our distance measure. • Our recent work suggests that KL-divergence can be viewed as an average-case bound, and our distance measure as a worst-case bound. A. Darwiche

  38. parameter change Applications to Bayesian networks What is the global impact of this local parameter change? A. Darwiche

  39. Distance between networks • N’ is obtained from N by changing the CPT of X from X|u to ’X|u. • N and N’ induce distributions Pr and Pr’. A. Darwiche

  40. = false = true Bounding query change: example Pr(fire | e) = 0.029 Pr’(fire | e) = ? Pr’(fire | e) = [0.016, 0.053] A. Darwiche

  41. Jeffrey’s Rule • Given distribution Pr: • Given soft evidence: A. Darwiche

  42. Jeffrey’s Rule If w is a world that satisfies i: A. Darwiche

  43. Example of Jeffrey’s Rule A piece of cloth:Its color can be one of: green, blue, violet.May be sold or unsold the next day. A. Darwiche

  44. Example of Jeffrey’s Rule Given soft evidence:green: 0.7, blue: 0.25, violet: 0.05  0.7 / 0.3  0.25 / 0.3  0.05 / 0.4 A. Darwiche

  45. Bound on Jeffrey’s Rule • Distance between Pr and Pr’: • Bound on the amount of belief change: A. Darwiche

  46. P Pr(p) Pregnant? yes 0.87 (P) no 0.13 Urine test Blood test Scanning test (U) (B) (S) P U Pr(u|p) P B Pr(b|p) P S Pr(s|p) yes -ve 0.27 yes -ve 0.36 yes -ve 0.10 no +ve 0.107 no +ve 0.106 no +ve 0.01 From Numbers to Decisions Test results: U, B, S Decision Function + Probabilistic Inference Yes, No A. Darwiche

  47. P Pr(p) Pregnant? yes 0.87 (P) no 0.13 Urine test Blood test Scanning test (U) (B) (S) P U Pr(u|p) P B Pr(b|p) P S Pr(s|p) yes -ve 0.27 yes -ve 0.36 yes -ve 0.10 no +ve 0.107 no +ve 0.106 no +ve 0.01 From Numbers to Decisions Situation: U=+ve, B=-ve, S=-ve U +ve - ve B - ve +ve S +ve + Probabilistic Inference - ve Yes No Ordered Decision Diagram A. Darwiche

  48. X1 X2 X2 X3 X3 1 0 Binary Decision Diagram Test-once property A. Darwiche

  49. Improving Reliability of Sensors Yes if > 90% Pregnant? (P) Urine test Blood test Scanning test (U) (B) (S) Currently False negative 27.0% False positive 10.7% Same decisions (in all situations) if new test is: False negative 10% False positive 5% Different decisions (in some situations) if new test: False negative 5% False positive 2.5% Can characterize these situations, compute their likelihood, analyze their properties A. Darwiche

  50. Adding New Sensors Yes if > 90% Pregnant? (P) Urine test Blood test Scanning test New test (U) (B) (S) (N) Same decisions (in all situations) if: False negative 40% False positive 20% Different (in some situations) decisions if: False negative 20% False positive 10% Can characterize these situations, compute their likelihood, analyze their properties A. Darwiche

More Related