360 likes | 462 Views
A RSSI based and calibrated centralized localization technique for Wireless Sensor Networks 一种基于信号强度 校准的 无线传感器网络 集中定位技术. CesareAlippi,GiovanniVanini DipartimentodiElettronicaeInformazione PolitecnicodiMilano P.zaL.daVinci32,20133Milano,Italy Email:alippi{vanini}@elet.polimi.it. Abstract.
E N D
A RSSI based and calibrated centralized localization technique for Wireless Sensor Networks 一种基于信号强度校准的无线传感器网络集中定位技术 CesareAlippi,GiovanniVanini DipartimentodiElettronicaeInformazione PolitecnicodiMilano P.zaL.daVinci32,20133Milano,Italy Email:alippi{vanini}@elet.polimi.it
Abstract This paper presents a multi-hop localization technique For WSNs exploiting acquired received signals trength indications.The proposed system aims at providing an effective solution for theselflocalization of nodes in static/semi-Static wireless sensor networks without requiring previous Deployment information. 本文使用获得的信号强度的方法为无线传感器网络提出了一种多跳定位技术。提出的系统为了使静态/准静态无线传感器网络在不需要任何配置信息的前提下提供一个有效的自身定位的解决方案。
1、Introduction(引言) In this paper we propose a practical approach for units localization in a typical scenario where some nodes, e.g., the one sat the network border, are used as anchors (i.e. they are placed in known positions ). All the RSSI values of the packets exchanged among nodes at different power levels are collected (RF mapping phase) and processed both to build the ranging model to be fed into a centralized Minimum Least Square (MLS) algorithm. The ranging model is calibrated from the online collected values, by selecting the optimal approximation family on the specificenvironment And normalizing the intensity of the received power. 本文我们为放置了一些节点的典型环境提出一种实际的节点定位方法。首先在网络的边界放置一些锚节点(它们的位置是已知的),把在不同能量水平之间的节点交换到的所有数据包的rssi值收集起来,然后建立一个带有集中最小二乘法的距离模型。距离模型根据选择最优近似family和规范接受能量的强度来实现对在线采集到的rssi值进行校准。
Our contribution can be summarized as a practical self localization system which does not Need the development of costly deployments of thenodes; a ranging model derived from calibrated RSS Information. 我们的系统可归纳为 一个不需要建立大量分布节点的实用自身定位系统 一个可以校准rssi值的距离模型
2、Localization scenario(定位场景) 1.RF mapping of the network: it is obtained by conveying short packets at different power levels through the network and by storing the average RSSI value of the Received packets in memory tables (we suggest to consider 5-10 values for estimating the RSSI ) 2.creation of the ranging model: all the tuples recorded Between two anchors are processed at the central Unit to compensate the nonlinearity and calibrate the model. 3.centralized localization algorithm: an optimization Problem is solved and provides the position of the nodes. 我们包括以下不同阶段的定位步骤 网络的RF地图:它可以通过在网络不同能量等级之间传送短的数据包和在存储表内存储接受包rssi的平均值(我们建议考虑5-10个值来对rssi估算) 距离模型的建立:对两个锚节点间以组的形式纪录在中心单元的数据的处理来补偿非线性和校准模型 集中定位算法:解决系统优化的问题和提供节点的位置
3、Generation of the RF attenuation modelRF 衰减模型的建立 1.the approximation function family. While in indoor Environments developing an attenuation model is extremely difficult and we have to rely on empirical models based created on data campaigns or heavy coverage of the environment with anchors (which implies a costly deployment), outdoor measurements are proportional to 1/r3-1/r4 ,where r is the distance From the emitting and receiving units. The model depends on the environment and the distance of the units From the soil. 为了建立一个rf衰减模型 ,需要考虑以下情况: 1、近似方程family:当在室外环境下建立一个衰减模型是非常困难的,我们需要根据经过数据的采集建立经验模型或者在区域内分布大量的锚节点(需要很大的开销),室外测量值与1/r3-1/r4成比例,其中r是发送与接收点之间的距离。模型依靠节点之间的距离和外部环境来建立的。
2.the calibration over the specie environment, which Takes into account the specie ambient response. 3.uctuation associated with the hardware which Changes due to production process. As such nodes are different. 4.the number of measurements to be considered to reduce the influence of the noise. 5.the number of information used to configure the model 2、特定环境的校准,需要考虑特定周围环境反响。 3、由于生产过程中不相同导致硬件的波动 4、多次测量能够减少噪声的影响 5、配置模型信息的参数数量
Our final approach has similarities to the one presented In [8] but we differentiate by investigating different model families, identified through the experimental campaign. Furthermore we consider all the available link information To build the ranging model with transmitters modulated at Different power levels. This point required us to study the Relationship between the transmitted and the received power And to properly normalize the data to the same tx power. More in detail, we rely on the attenuation family. PT=a+b/rk 我们最后的方法和文献8提出的方法类似,但是我们通过研究不同的模型集合,确定利用实验采样的方法。然后我们考虑所有相关的连接信息来建立一个在不同能量等级调制的距离模型。这点需要我们研究发送和接受功率的关系和正确地规范相同发送功率的数据。详细地说,我们依靠衰减集合如下 PT=a+b/rk
4、Localization algorithm(定位算法) The proposed algorithm estimates the node positions by Minimizing the sum of the discrepancies between the estimated distance between the nodes and the measure done (Minimum Least Square algorithm). 本文提出的算法通过减少节点到测量点之间距离的总差异来对节点进行定位(最小2乘法)。
The first step is to correct the received power as 第一步是对接收到的功率进行校正 P’rx=f(Prx,Ptx) The estimated distance between the nodes is then 节点之间的估算距离为 The final solution is obtained by minimizing the constrained function 最后通过减少约束方程得到最终解
5、Experimental results(实验结果) The effectiveness of our localization methodology has Been tested on a real scenario of outdoor localization:20 MICA2s are placed on the ground in a football field, to cover an area of about 500mm. 我们在一个真实的室外场景检验过定位方法的效果:20个mica2的节点放在一个足球场内,区域的面积为500平方米
According to our previous analysis, the first stage is To create the ranging model for the specific environment. Some tests have been performed with all the available data (not only the link between anchors) to see which was the effect of the linearity correction (power calibration) and of the Different approximation functions when building the model 根据我们的分析,第一步是建立一个特定环境的模型。实验通过处理所有可以得到的数据(不仅是锚节点的连接)来实现校正(功率校正),然后代入建立的模型来得到不同的近似方程(典型的框架由图4所示)
The overall average error of the localization algorithm is given in Fig.5. Results confirm that the family 1/r3 Is the best approximation in our environment. The localization results provide an error of around 3m with 6 anchors and around 2.3m with 7 anchors 定位算法的总体平均误差可由图5得到。结果表明在我们的环境下近似值为1/r3是最好的 .定位的结果表明在6个锚节点时误差大约为3米。七个锚节点时误差大约为2.3米。
6、Conclusion(小结) The paper suggests a RSSI-based centralized localization technique for outdoor environments. Our methodology allows for addressing any outdoor environment without complex previous offline calibrations and takes advantage of a MLS localization algorithm. Experiments confirm The effectiveness of this approach which is comparable to the best implemented RSSI-based multi-hop localization systems: we experienced an average Error of less than 3 meters when the node density is of about One node over 25mm in an area of about 500mm . 文章提出了一个在室外环境下基于rssi集中定位技术。我们的方法允许系统放在任何环境下同时不需要复杂的离线校正,只需利用最小2乘法。实验通过比较其他基于rssi多跳定位系统,验证了以这种方法的有效性。当在500平方米的范围内节点的密度为每25平方米一个时,我们得到小于3米的误差.
Wei-Wei Ji and Zhong Liu Department of Electronic Engineering Nanjing University of Science & Technology Nanjing, The People!ˉs Republic of China jwwlr@163.com, eezliu@mail.njust.edu.cn An Improvement of DV-Hop Algorithm in Wireless Sensor Networks 无线传感器网络中dv-hop算法的改进
Abstract In this paper, we develop a new estimation model and improve the DV-Hop algorithm by considering the relationships between the communication ranges and the hop-distances. This scheme needs no additional hardware support and can be implemented in a distributed way. Simulation results show the performance of the proposed algorithm is superior to that of the DV-Hop algorithm. 本文,我们开发了一个新型评估模型以及通过考虑通信范围和跳距的关系来改善Dv-hop算法。这种方法不需要额外的硬件支持以及能够通过分布方式实施。仿真的结果表明提出的算法的性能比原有的Dv-hop算法更先进。
1、Introduction(引言) In this paper, we improved the unknown node estimation in the third phase of DV-Hop algorithm without additional hardware. In the proposed scheme, a constraint is assumed in DV-Hop by confining the range from the unknown node to reference node in the smallest range to the reference nodes. The scheme can be implemented in a distributed way and is a real range-free algorithm which is different from aforementioned algorithms. 本文,我们不需要增加任何硬件来改善Dv-hop算法的未知节点位置的估算。在提出的方案中,假设把未知节点到相关节点的范围限制在参考节点的最小的范围内。算法能在分布实施而且它与一般Dv-hop算法不同。
2. DV-Hop Localization Algorithmdv-hop定位算法 After the first phase, all nodes in the network get the minimum hop count values to all reference nodes. 第一阶段之后,所有的网络节点得到一个到参考节点最小的跳数值。 In the second phase, the average single hop distance is estimated to convert hop count value into physical distance. 第二阶段,平均每跳距离的估算可以把跳数转换成为真实距离。 In the third phase, the unknown node locations can be estimated by the multilateration method when these nodes have the distance estimations to at least three reference nodes 第三阶段,当这些节点已经知道至少3个参考节点的距离信息时,未知节点位置可以通过多边测量法估算出来。
3. Improved Algorithm(改进算法) We improve the DV-Hop algorithm by using above observation and denote it as CDV-Hop.value between N and reference node is L and the average single hop distance is HopSizei , i = 1,2, M and M is the number of the reference nodes. Then the distance between N and the i-th reference node is d = L*HopSize . Let L= min{L1,L2,LM}.In general, there exist several reference nodes with same hop values equal to L.Denote these reference nodes as vj , j=1,2, M=. Then the location of N can be computed as 我们利用CDV-HOP来完善DV-HOP算法。对于相关节点i,Nu到参考节点i的帧跳数为Li,平均每跳的距离为HopSizei,i=1,2,…M,其中M是参考节点的数量,i,然后未知节点到第i个参考节点的距离di=Li*HopSizei,设L=min{ L1, L2, ….LM},一般来说,这里存在一些跳数为L的参考节点。把这些参考节点表示为vj, j=1,2,…M,然后Nu的位置可以表示为
4. Simulation Results(仿真结果) Figure 2 is the localization results of UNs by the proposed CDV-Hop algorithm and the conventional DV-Hop algorithm. In the simulations, RNs are set to be 20, UNs are 80 and the communication range (CR) is 15. It can be seen that the localization accuracy of the CDV-Hop algorithm is better than the DV-Hop algorithm can do. 图2是采用CDV-HOP算法和传统DV-HOP得到的定位情况。总的来说,参考节点数为20,未知节点为80,测量的范围为15。我们能够看到CDV-HOP算法定位精度比DV-HOP好。
Figure 3 shows the variation of the average localization errors as the reference ratios. Suppose that the total . It can be seen from Fig. 3 that the average localization error by the CDV-Hop algorithm is obviously less than the DV-Hop method in all considered conditions. And the average localization error increases when the communication range increases as expected, since the accuracy of the average single hop HopSize is more coarser with increased distance communication range. 图3表示参考节点在不同比例下平均定位误差的变化。由图3可以看出在所有环境下CDV-HOP算法的平均定位误差比DV-HOP小。当通信的范围增大平均的定位误差也随之增大,因为通信距离的增大导致平均每跳的距离HopSizei精度减少。
Figure 4 is the variation of the normalized average localization error with respect to the communication range. It is clear that the normalized average localization errors decrease as the communication range increases. 图4为关于通信范围的平均定位误差的变化。可以清晰看到随着通信范围的增大,标准平均定位误差减少。
6、Conclusion(小结) In this paper, we proposed an improved DV-Hop algorithm for locating the unknown nodes. A new estimation model is developed by considering the relationships between the communication ranges and the hop values. The simulation results show that our proposed method can reduce the nodes average localization error significantly in different communication ranges and reference node ratios. 本文我们提出了一个改进的DV-HOP算法来确定未知节点的位置。通过考虑通信范围和跳数之间的关系建立一个新的估算模型。仿真的结果表明在不同的通信范围和参考节点比例下我们提出的方法有效地减少了节点定位误差。
Bao Xu, Wang Gang UWB Lab, Dept. of Telecommunication Engineering,Jiangsu University,Zhenjiang, Jiangsu Province, China, 212013 mousebaoxu@yahoo.com.cn,gwang@ujs.edu.cn Random Sampling Algorithm in RFID Indoor Location System RFID室内定位系统随机采样算法
Abstract 本文提出一个低功耗RFID室内定位方法,可以通过配置RFID标签和建立一个新的定位算法来使拿着RFID阅读器的人员可以实时知道他在什么位置。在这算法,通过获得随机取样集合来给出人的空间位置。同时利用基于取样的方法提出一个表现随机分布定位的方法。传统的Toa最小2乘法和本文提出算法的比较表明在非视距环境下新算法的定位误差比最小2乘法的小。同时最小2乘法需要至少放置3个标签,然而新提出的算法不需要。
1、Introduction(引言) 本文,我们提出了一个低功耗的RFID室内定位系统。方案基于运动目标。在之前的RFID室内定位系统中,昂贵的读写器必须安装在一些已知固定的位置,然后标签附在目标物体上。一些系统需要大量的读写器来实现标签的精确定位。所以费用非常的高,在我们的系统里,我们利用低成本的无源标签固定在一些已知的地方来减少成本。他利用固定的无源标签来对运动的读写器进行定位,定位的结果可以在读写器上显示。在40*40平方米的房子里,我们每隔5米放置一个无源标签。在数字地图和新算法的帮助下,一个人拿着一个能够获得它的位置和轨迹的读写器进入房间,并能确定位置。
2. Probabilistic RFID reader model (observation model) 为了在一个球形的参考框架内对阅读器进行地位,我们假设P(Xk| Zk),其中Xk是在K时段的阅读器的位置,Zk是K时段的观测值。根据贝叶式定律和假设连续测量的独立性,我们可以由下式得到Xk的位置: 根据公式,主要的依据是概率P(Xk| Zk),它指定了由阅读器Xk得到的观测值Zk的可能性。我们做一个简单的假设这种可能性依靠标签和阅读器天线之间的相对偏移量。因为传感器的噪声非高斯分布,我们提出一个分段常数接近的观测模型。
考虑上述所有的情况,我们可以建立一个观测模型,如图所示。最大的检测范围为6米,检测概率为0.9。区域外的位置概率为0.5。考虑上述所有的情况,我们可以建立一个观测模型,如图所示。最大的检测范围为6米,检测概率为0.9。区域外的位置概率为0.5。
3. Localization with RFID tags 1.得到检测标签的位置,去掉那些范围外的标签 Rkm>Rmax. 2.使用N个以Xk-1为圆心的高斯圆的随机采样值Sk替换Xk-1 3.在每一个采样点Sk(Pi)分配一个0到1之间的值来存储概率P(Xk| Sk-1i) 4.如果 , 否则 M为第一步检测到标签的数量; 5.找出N个采样值中的最大值作为采样值 6.计算位置Xk. 7.K=k+1; 8.重复第一步
4. Simulation results 在我们的RFID室内定位系统中,我们在40*40平方米的房子里,每隔5米放置一个无源标签。我们假设人员的轨迹为(10,4), (12,7), (14,5), (15,7), (15,9), (15,13), (13,15), (11,15), (9,18), (8,20), (8,22), (8,25), (9,25), (12,25), (12,28), (14,35), (15,38), (14,40).在仿真中,我们考虑到NLOS以及采样点的数量的影响以及与LS定位算法进行比较。在这部分中,我们考虑了在非视距环境下对定位误差的影响。
图2,4表示NLOS=5m和NLOS=10m人员的轨迹,图3,5表示在NLOS=5m和NLOS=10m时新算法和最小2乘方法的误差比较。从这些图可以观测到,传统LS定位的误差随着NLOS的提高而成线性增长。然而,新算法对于NLOS并不敏感。从图2,4看出,我们可以在NLOS不同的情况下,正常实现人员跟踪。图2,4表示NLOS=5m和NLOS=10m人员的轨迹,图3,5表示在NLOS=5m和NLOS=10m时新算法和最小2乘方法的误差比较。从这些图可以观测到,传统LS定位的误差随着NLOS的提高而成线性增长。然而,新算法对于NLOS并不敏感。从图2,4看出,我们可以在NLOS不同的情况下,正常实现人员跟踪。
从图6,7可以看到当每个时阶有2个NLOS检测标签时的人员的轨迹和定位的误差。由于在3和15时阶只有两个标签。LS为无效。从图6可以观测到,人员的定位没有受到影响。从图6,7可以看到当每个时阶有2个NLOS检测标签时的人员的轨迹和定位的误差。由于在3和15时阶只有两个标签。LS为无效。从图6可以观测到,人员的定位没有受到影响。
在图8 可以看到当NLOS为0时不同采样点数量对定位误差的影响。当数量减少到250时定位误差没有受到影响。所以,新算法能够有效保留计算资源和具有很好的实时性。
6、Conclusion(小结) 在本文中,我们给出了一个RFID室内定位系统新的人员定位方法。我们给出一个观测模型能让我们计算出标签位置的概率来给出标签的相对于人的位置。而且,我们描述了如何计算人员的先前位置和利用它定位和计算轨迹。 根据仿真,我们的算法对NLOS和采样数不敏感。我们知道越少的采样点会节省计算资源。在RFID室内定位系统中,我们的算法能够有效精确估算出人员的位置。