680 likes | 705 Views
Ch a pter 5 W i r eless W ide A r ea Net w o r ks. Learni n g o b jecti v es. To u n d e r s t a n d Wi r e l e s s Wide Area Netwo r ks (WWA N s) To s tu d y the WWAN st a n d a r ds To k n o w the a r c h it e c t u r es of WWANs To s tu d y the p r ot o c o ls u s ed in WWANS
E N D
Chapter5 Wireless Wide Area Networks Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Learningobjectives • To understandWireless WideAreaNetworks • (WWANs) • To study theWWAN standards • To know thearchitectures ofWWANs • To study theprotocols usedinWWANS • To illustratetheapplicationsof WWANs Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Wirelesswide area networks technologiessuch as Global System for Mobile • Communications (GSM), General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA), etc., to transfer data. • WWAN can also use Local Multipoint Distribution Service (LMDS) and Wi-Fi to connect to the Internet. • WWAN connectivity allows a user with a laptop and aWWAN card to surf the web, check email, or connect to a Virtual Private Network (VPN) from anywhere within the regional boundaries of cellular service. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Cellularnetworks • A cellular network uses a large number of low-power wirelesstransmitters to create cells - the basic geographic service area of a wireless communications system. • Mobile users travel from cell to cell, their conversations arehanded of between cells to maintain seamless service. • Channels (frequencies) used in one cell can be reused in • another cell some distance away. • Cells can be added to accommodate growth, creating new cells in unserved areas or overlaying cells in existing areas. • Examples of this type of networks are GSM, PCS (Personal communication systems) and UMTS/IMT 2000 (Universal Mobile Telecommunications System /International Mobile Telecommunications). Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Principlesof cellularnetworks • The cellular architecture consists of a backbone network with fixed base stations (BSs) interconnected through a fixed network (usually wired), and of mobile stations (MSs) that communicate with the base stations via wireless links. • The geographic area within which mobile stations (MSs) can communicate with a particular base station (BS) is referred to a cell. • Neighboring cells overlap with each other, thus ensuring continuity of communications when the users move from one cell to another. • The MSs communicate with each other, and with other networks, through the base stations and the backbone network. • A set of channels (frequencies) are allocated to each base • station. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Principles of cellular networks (Contd..) • Communication area is divided into hexagonal cells. Cell dimensions range from hundreds of meters till tens of kilometers. • Each cell is served by a BS formed by a transceiver and a control unit. Each cell is allocated a frequency band for communication. • Communication from MS to BS uses reverse link and • communication from BS to MS uses forward link. • Frequency reuse is a technique of reusing frequencies and channels within a cellular network to improve the network capacity. • Cells that reuse the same frequency must be distant • enough for avoiding interference. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Principles of cellular networks (Contd..) Cellular network Handoffincellular networks Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Handoff • The procedure of moving from one cell toanother, while a call is in progress, is called handoff. • While performing handoff, the MS requires that the BS in the cell where it has movedallocates a channel. • – If channel is not available in the new cell, the handoff call is blocked and blocking is called handoff blocking. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Handoff (Contd..) • The QoS (Quality of Service) of a cellular network is determined by new call and handoff blockingprobabilities. • Blocking probabilities can be reduced by increasing the capacity of the cellular networks. • Capacity of Cellular networks can be increased • by applying efficient power control algorithms or • by reducing the size of the cells or • by increasing the number of channels in each cell. • High cost solution • Reduced cells size • Adding supplementary channels Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Othermethodsto increasecapacityin cellularnetworks • Frequency borrowing: congested cells usefrequencies taken from adjacent cells where less traffic is observed. • Cell sectoring: cells are divided into sectors and each sector is allocated its own set of frequencies. BSs usedirectional antennas to cover sectors. • Microcells and picocells: a microcell covers a range of about 500 m and a picocell covers a range of about 10 m. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Example • A cellular network has a total bandwidth 56 MHz. If two 35 KHz simplex channels are used to provide full duplex voice and control channels, compute the number of channels available per cell if a system uses (a) 4-cell reuse, (b) 7-cell reuse, (c) 12-cell reuse. • Solution: • Given that the total available bandwidth is 56 MHz = 56,000 KHz. • Channel bandwidth = 35 KHz x 2 simplex channels = 70 KHz/duplex channels. • Total available channels = 56,000/70 = 800 channels. • let N denotes cell reuse. • (a) For N = 4, Total number of channels available per cell = 800/4 = 200 channels. • (b) For N = 7, Total number of channels available per cell = 800/7 = 115 channels. • (c) For N = 12, Total number of channels available per cell = • 800/12 = 67 channels. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Example In a cellular network with hexagonal cells, it is forbidden to reuse a frequency band in an adjacent cell. If 915 frequencies are available, how many frequencies can be used in a given cell? Solution: Given that the cell shape is hexagonal, hence it has six neighbors. If the central cell uses frequency group A, its six neighbors can use B, C, B, C B, and C respectively. In other words, only 3 unique cells are needed. Therefore each cell can have (915/3) or 305 frequencies. Example scenario Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Example • Consider a cellular network with 64 cells. Each hexagonal cell has an approximate area 10 km2. The total number of radio channels allotted for the network is 336. • What is the total area covered by the cellular network. • Find the total number of channels of the network, if (a) N = 4, (b) N = 7, (c) • N = 12, where N denotes cell reuse. • Solution: • Total number of cells = 64. Each cell area = 10 km2. • The total area covered by the cellular network is, 64 X 10 = 640 • km2. • It is given that the total available channels in the network = 336. • (a) For N = 4, the available channels in a cell = 336/4 = 84 • Total channels = 84 X 64 = 5,376 channels. • (b) For N = 7 , the available channels in a cell = 336/7 = 48 • Total channels = 48 X 64 = 3,072 channels. • (c) For N = 12, the available channels in a cell = 336/12 = 28 • Total channels = 28 X 64 = 1,792 channels. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GSM • Salient features of GSM (Global System for Mobile Communications) • Frequency band: originally designed for 900 MHz band, later for 1800 MHz • Channels: 200 full-duplex channels per cell. • Each channel consists of a downlink frequency and an uplink frequency. • Circuit switched • suffers from high error rate, CDPD (Cellular Digital Packet Data) can be • used to over come this problem. • Speed: see Chapter 1. • Hybrid frequency-division/time-division multiple access (FDMA/TDMA): • FDMA divides 25 MHz allocated bandwidth into 125 carrier frequencies • that are spaced 200 kHz apart. • Eight burst periods (slots) are grouped into a TDMA frame (approx. • 4.615 ms, i.e., 0.577 ms for one slot). • A physical channel is one burst period per TDMA frame. Slow frequency hopping at up to 217 times per second. • Services: Supports value added services such as SMS (Short Message Service), access to Internet, Wireless Application Protocol, call forwarding, etc. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GSM Architecture • GSM networks operate at various different radio frequencies: 900MHz 1800MHz. and/or • USA and Canada operate at 850MHz and/or 1900MHz. • Major components of a GSM network are: • MS (Mobile Station), • BSS (Base Station System), • Operation and Maintenance Center (OMC), and – Network and Switching Subsystem(NSS). GSM networkarchitecture Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GSM Architecture(Contd..) • Mobile Mobile laptop. Station (MS): phone, PDA or a • It consists of a subscriber identity module (SIM) and a mobile equipment (ME). • – The ME (the phone itself), is identified by Mobile Identity International Equipment (IMEI). Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
BaseStation System(BSS) • Consists of • One or more base transceiver station (BTS). A BTS (or BS), is a radio access point that defines a single cell: it includes a radio antenna, and a radio transceiver. It performs channel coding/decoding and encryption/ decryption. • A base station controller (BSC): BSs are connected to a BSC which manages the radio resources. BSC is responsible for handovers to other cells based on BS transmitter power. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Operation and Maintenance Center (OMC): manages OMC • the GSM functional blocks: Mobile Switching Center (MSC) and the BSC (and indirectly the BS). • Maintains satisfactory operation of the GSM network based on observing the system load, blocking rates, handovers, etc. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
NSS • Network and Switching • Subsystem (NSS): it contains • – Mobile Switching Center (MSC): used to facilitate communication between different MSs connected to different BSs. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
NSS (Contd..) – Interworking Functional Unit (IFU): allows the mobile stations (MSs) connected to a mobile switching center (MSC) to connect to public switched data network (PSDN), to public switched telephone network (PSTN) or the Internet. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
NSS (Contd..) – Equipment Identity Register (EIR): It contains a list of valid MS equipment within the network, where each MS is identified by its International Mobile Equipment Identity (IMEI). Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
NSS (Contd..) • Home Location Register (HLR): Database for management of mobile subscribers. Billing: must identify that every call is being made by either a home or a roaming user. • Visitor Location Register (VLR): Manages roaming Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
NSS (Contd..) • Authentication Center • (AuC): • It is a protected database that has a copy of the secret key stored in each subscriber’s SIM card. • This key is used for authentication and encryption over the radio channel. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GSM as a cellularnetworkstandard • GSM was the European standard for voice services; later data services were introduced. • Some of the standards developed for WWANs are IS-41, IS-54, IS-88, IS-91, IS-93, IS-95, IS-124, IS-637, IS-756, and IS-2000. • IS stands for Inter-Systems operation • Four different cell sizes in a GSM network • macro, micro, pico and umbrella cells. • macro cells: cells where the BS antenna is installed in a mast or a building above average roof top level. • micro cells: Antenna height is under average roof top level; they are typically used in urban areas. • picocells: they are mainly used indoors. • umbrella cells : To cover shadowed regions of smaller cells • and fill gaps in coverage between those cells. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GPRS • General Packet Radio Service (GPRS) is a non-voice value-added service that allows information to be sent and received across a mobile telephone network. • It supplements today’s circuit-switched data and SMS. • GPRS is not related to the global positioning system (GPS), a similar acronym that is often used in mobile contexts. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GPRS Architecture • General Packet Radio Service (GPRS) is an enhancement over the GSM and adds some nodes in the network to provide the packet switched services. • These network nodes are called GPRS support nodes (GSNs) and are responsible for the routing and delivery of the data packets to and from the MS and external packet data network (PDN) Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GPRS Architecture(Contd..) Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GPRS mobile station(MS) • GPRS mobile station (MS) includes two components: MT (Mobile Terminal) and TE (Terminal Equipment). • MT is typically a handset used to access the radio interface. • It consists of • ME, • SIM, and • Terminal Adaptation Function (TAF) • – TAF helps GPRS TE merely to use the radio system at hotspots. • TE is typically a laptop or a Personal Digital Assistant • (PDA). Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GPRS mobilestation (Contd..) • Three different classes of MS have been defined: • Class-A: supports simultaneous monitoring and operation of both GPRS (packet-switched) and GSM (circuit- switched) services. • Class-B: supports simultaneous monitoring but not simultaneous operation of GSM (circuit-switched) and GPRS (packet-switched) services. • Class-C: supports either GSM (circuit-switched) or GPRS (packet-switched) monitoring and operation at a given time. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
SGSN • SGSN (Serving GPRS support nodes): It is responsible for the delivery of data packets from and to the mobile stations within its geographical service area. • SGSN performs the following functions: authentication and authorization. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GGSN • GGSN (Gateway GPRS support nodes). It acts as interface between the GPRS backbone and the external PLMN (Public Land Mobile Network) or Internet • It interfaces to external data networks (basically it is a network router) Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
CGF(The Charging Gateway Function) • It provides the mechanism of transfer of charging information from the GPRS Support Nodes (GSNs) the billing system • The CGF can be a separate centralized element or it • can be distributed among GPRS Support Nodes • GPRS networks derive charging information for each user transaction into Call Detail Records (CDRs) from SGSNs and GGSNs. • Billing is typically based on the amount of data transferred Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
FunctioningofGPRS • GPRS is a packet-switched protocol for applications such as World Wide Web (WWW). • SGSN receives and transmits packets between • the MSs and their counterparts in the PSDN • GGSN interworks with the PSDN using • connectionless network protocols • SGSN and GGSN interact with the GSM location databases Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Functioningof GPRS (Contd..) • The GPRS data units are routed to the destination MSs based on location information. • Both SGSN and GGSN may be equipped with cache memories containing location information to speed up the routing procedure. • GPRS air interface requires a new radio link protocol to guarantee fast call setup procedure and low bit error rate for data transfer between the MSs and the BSs. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
CDMA • Code division multiple access (CDMA) is a channel access method utilized by various radio communication technologies. • CDMA consistently provides better capacity for voice and data communications than other commercial mobile technologies. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
CDMA (Contd..) • When implemented in a cellular telephone system, • CDMA technology offers following benefits: • Capacity increases of 8 to 10 times that of an AMPS analog system and 4 to 5 times that of a GSM system. • Improved call quality • Simplified system planning through the use of the same • frequency in every sector of every cell. • Improved coverage characteristics Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
CDMA (Contd..) • CDMA One describes a complete wireless system based on the IS-95 CDMA standard, including IS-95A and IS-95B revisions. • IS-95A describes the structure of the wideband 1.25 MHz CDMA channels, power control, call processing, hand-offs, and registration techniques for system operation. • CDMA 2000 represents a family of International Telecommunication Union (ITU). • WCDMA (or W-CDMA) stands for Wideband Code Division • Multiple Access. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
CDMA2000networkarchitecture Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
The Mobile Station(MS) • In a CDMA2000 1X network, the mobile station-the • subscriber's handset-functions as a mobile-IP client. • Upon power-up, the mobile station automatically registers with the HLR in order to • Authenticate the mobile for the environment of the accessed network • Provide the HLR with the mobile's current location • Provide the Serving Mobile Switching Centre (MSC-S) • with the mobile's permitted feature set Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Base Station Transceiver Subsystem (BTS) • BTS controls the activities of the air link and acts as • the interface between the network and the mobile. • RF resources such as frequency assignments, sector separation and transmit power control are managed at the BTS. • In addition, the BTS manages the back-haul from the cell site to the Base Station Controller (BSC) to minimize any delays between these two elements. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
BaseStation Controller(BSC) • BSC routes voice- and circuit-switched data messages • between the cell sites and the MSC. • It also bears responsibility for mobility management : it controls and directs handoffs from one cell site to another as needed. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Packetdataservingnode • The PDSN does the following activities: • Manage the radio-packet interface between the BSS (Base Station Subsystem = BTS + BSC) and the IP network by establishing, maintaining and terminating link layer to the mobile client • Terminate the Point-to-Point Protocol (PPP) session initiated by the subscriber • Provide an IP address for the subscriber (either from an internal pool or through a DHCP server or through an AAA server) Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Packetdata servingnode(Contd..) • Perform packet routing to external packet data networks or packet routing to the HA which optionally can be via secure tunnels • Collect and forward packet billing data • Actively manage subscriber services based on the profile information received from the SCS server of the AAA server • Authenticate users locally, or forward authentication requests to the AAA server Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Packetdata servingnode(Contd..) • Accounting, Authentication, and Authorization (AAA) server: AAA server is used to authenticate and authorize users for network access and to store subscriber usage statistics for billing and invoicing. • Home Agent (HA) server: HA supports seamless data roaming into other networks. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Call set-upscenarioin CDMA2000 Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Call set-up scenario in CDMA2000 (Contd..) • The sequence of operations during call set up are • mentioned below: • To register for packet data services, the mobile sends an Origination Message over the access channel to the BSS. • The BS acknowledges the receipt of the Origination • Message, returning a BS ACK to the mobile. • The BS constructs a Service Request message and sends the message to the MSC. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Call set-up scenario in CDMA2000 (Contd..) • 4. The MSC sends an Assignment Request message to the BSS requesting assignment of radio resources. No terrestrial circuit between the MSC and the BS is assigned to the packet data call. • The BS and the mobile perform radio resource set-up • procedures. • The PCF sends Registration Request message to the selected PDSN. • The Registration Request is validated and the PDSN accepts • the connection by returning an Registration Reply message. • After the radio link and connection are set-up, the BS sends an Assignment Complete message to the MSC. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Call set-up scenario in CDMA2000 (Contd..) • 9. The mobile and the PDSN establish the link layer (PPP) connection and then perform the registration procedures over the link layer (PPP) connection. • After completion of registration, the mobile can send/receive data. • The PCF periodically sends Registration Request message • for refreshing registration for the connection. • For a validated Registration Request, the PDSN returns Registration Reply message. Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
GSM Vs. CDMA Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.
Handoverin cellularnetworks Theseslidesarebasedontheslides formattedby Dr SunilkumarS.manviand DrMahabaleshwarS. Kakkasageri,the authorsofthetextbook:WirelessandMobileNetworks,conceptsandprotocols.See slide numberone.