210 likes | 295 Views
PLASMA INPUT AND METABOLITE FRACTION MODELS. TPCMOD0009 Models for plasma metabolite correction TPCMOD0010 Modelling input function. http://pet.utu.fi/staff/vesoik/reports/tpcmod0000.html. PLASMA METABOLITES. http://pet.utu.fi/staff/vesoik/analysis/doc/metab_corr.html.
E N D
PLASMA INPUT AND METABOLITE FRACTION MODELS TPCMOD0009 Models for plasma metabolite correction TPCMOD0010 Modelling input function http://pet.utu.fi/staff/vesoik/reports/tpcmod0000.html
PLASMA METABOLITES http://pet.utu.fi/staff/vesoik/analysis/doc/metab_corr.html
MODELLING PLASMA METABOLITES: WHY? • Removes ”noise” in the measured parent tracer fraction curve • Interpolation of the fraction curve • Extrapolation of the fraction curve • Population based average metabolite correction?
MODELLING PLASMA METABOLITES: HOW? • Linear interpolation (no modelling) • Mathematical function fitting • Kinetic models http://pet.utu.fi/staff/vesoik/reports/tpcmod0009.pdf
MATHEMATICAL FUNCTIONS • Exponential functions • Hill-type function • Watabe’s empirical equation
Hill-type functions http://pet.utu.fi/staff/vesoik/programs/doc/fit_hill.html
KINETIC MODELS FOR PLASMA METABOLITES • Huang et al. 1991, Reith et al. 1990, Gjedde et al. 1991 • Carson et al. 1997 • Models for [15O]O2: Huang et al. 1991, Iida et al. 1993 http://pet.utu.fi/staff/vesoik/reports/tpcmod0009.pdf
Huang’s plasma metabolite model http://pet.utu.fi/staff/vesoik/reports/tpcmod0009_app_a.pdf
Extended Carson’s plasma metabolite model http://pet.utu.fi/staff/vesoik/reports/tpcmod0009_app_b.pdf
New plasma metabolite model http://pet.utu.fi/staff/vesoik/reports/tpcmod0009_app_c.pdf
KINETIC PLASMA METABOLITE MODELS MAY FAIL IF: • Noise in measured plasma or blood curve • Missing plasma samples during tracer infusion
MODELLING PLASMA CURVE: WHY? • Removes noise • Interpolation • Extrapolation • Reduces bias caused by missing samples • Population based curve applying few late-time venous samples
MODELLING PLASMA CURVE: HOW? • Linear interpolation (no modelling) • Spline fitting • Mathematical function fitting • Kinetic models http://pet.utu.fi/staff/vesoik/reports/tpcmod0010.pdf
MATHEMATICAL FUNCTIONS • Sum of exponential functions • Thompson and Golish bolus input function • Gamma variate function • Feng et al. (based on compartmental models) http://pet.utu.fi/staff/vesoik/reports/tpcmod0010.pdf http://pet.utu.fi/staff/vesoik/programs/doc/fit_feng.html
Examples of Thompson’s function with asymptotic recirculation term by Golish et al.
KINETIC MODELS FOR PLASMA CURVE • Feng et al. 1993 • Graham 1997
GRAHAM’S MODEL http://pet.utu.fi/staff/vesoik/reports/tpcmod0010_app_a.pdf
GRAHAM’S MODEL FOR PLASMA CURVE ANDA METABOLITE http://pet.utu.fi/staff/vesoik/reports/tpcmod0010_app_b.pdf
PROBLEMS • Model contains up to 18 parameters • Difficult to weight metabolite fractions in relation to plasma • Peak is not fitted well: may need a constraint • Fast metabolism: are the first measured fractions correct?