330 likes | 738 Views
§ 5 - 3 刚体的角动量守恒定律. o . L. v i. o. r i. m i. 一、刚体定轴转动的角动量. 刚体上的一个质元,绕固定轴做圆周运动角动量为 :. 所以刚体绕此轴的角动量为:. 刚体对固定转动轴的角动量 L, 等于它对该轴的转动惯量 J 和角速度 的乘积。. F t. F n. 二、转动定律. 1 、一个质点的情况. 法向力 F n = ma n ,通过转轴,力矩为零 切向力 F t = ma t = mr α 对转轴的力矩为 M = F t r = mr 2 α 质点的角加速度与质点所受的力矩成正比.
E N D
o L vi o ri mi 一、刚体定轴转动的角动量 刚体上的一个质元,绕固定轴做圆周运动角动量为: 所以刚体绕此轴的角动量为: 刚体对固定转动轴的角动量L,等于它对该轴的转动惯量J 和角速度 的乘积。
Ft Fn 二、转动定律 1、一个质点的情况 法向力 Fn=man,通过转轴,力矩为零 切向力 Ft=mat=mrα 对转轴的力矩为 M= Ft r= mr2α 质点的角加速度与质点所受的力矩成正比 2、内力矩 刚体内任意两点之间的相互作用力,大小相等,方向相反,在同一条直线上。两力的力臂相等,因而两力的力矩相等,方向相反。故两个内力的合力矩为零。 推广:刚体的内力力矩之和为零。 f d f ’
3、刚体的情况 把刚体看成是由许多质点所组成的,对于质点i,假设它的质量为△mi,所受的外力为Fi,内力为f i,则 其中Mi为外力矩和内力矩之和。 合力矩=外力矩之和+内力矩之和=外力矩之和=M
定义转动惯量 转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。 说明: 1)合外力矩和转动惯量都是相对于同一转轴而言的; 2)转动定律的地位与质点动力学中牛顿第二定律相当,是解决刚体定轴转动问题的基本方程。
z yi xi ri y mi Δ x 若质量离散分布 若质量连续分布 三、转动惯量 1、定义 刚体的转动惯量等于刚体上各质点的质量与各质点到转轴距离平方的乘积之和。 2、说明 • 转动惯量是标量; • 转动惯量有可加性; • 单位:kg·m2 3、转动惯量的计算
B A X L C B A X L/2 L/2 例1、求长为L、质量为m的均匀细棒对图中不同轴的转动惯量。 解:取如图坐标,dm=dx
O O R R dm dm 例2、求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂直并通过圆心。 解:
dr r R 例2、求质量为m、半径为R、厚为l的均匀圆盘的转动惯量。轴与盘平面垂直并通过盘心。 解:取半径为r宽为dr的薄圆环, 可见,转动惯量与l无关。所以,实心圆柱对其轴的转动惯量也是mR2/2。
4、影响刚体转动惯量的因素 • 刚体的总质量:形状、大小和转轴都相同的匀质刚体,总质量越大,则转动惯量越大; • 刚体的质量分布:形状、大小和转轴都相同的刚体,质量分布离轴越远,转动惯量越大; • 转轴位置:同一刚体,对不同位置的转轴,其转动惯量是不同的。
B A X L C B A X L/2 L/2 四、平行轴定理 例1中,通过棒端A的轴的转动惯量 两轴平行,相距L/2。可见:
c o Jc J d o c 推广上述结论 若有任一轴与过质心的轴平行,相距为d,刚体对其转动惯量为J,则有——平行轴定理 J=JC+m d2。 说明: 1)通过质心的轴线的转动惯量最小; 2)平行轴定理可以用来计算刚体的转动惯量。
z m 圆盘 C y R x *垂直轴定理 对于薄板刚体,若建立坐标系Oxyz,其中z轴与薄板垂直,Oxy平面在薄板内,则薄板刚体对z 轴的转动惯量等于对x 轴的转动惯量和对y 轴的转动惯量之和
细直杆 细直杆 m l m 薄圆环 或薄圆筒 圆盘 或圆柱体 l m R m R 几种均匀刚体的转动惯量
由转动定律 得 积分得 当转动惯量一定时 当转动惯量变化时 三、刚体定轴转动的角动量定理和转动定理 刚体的角动量定理:当转轴给定时,作用在刚体上的冲量矩等于刚体角动量的增量。
五、刚体定轴转动的转动定律的应用 题目类型 1.已知转动惯量和力矩,求角加速度; 2.已知转动惯量和角加速度,求力矩; 3.已知力矩和角加速度,求转动惯量。 解题步骤 1.确定研究对象; 2.受力分析; 3.选择参考系与坐标系; 4.列运动方程; 5.解方程; 6.必要时进行讨论。
注意以下几点: 1.力矩与转动惯量必须对同一转轴而言的; 2.要选定转轴的正方向,以便确定已知力矩或角加速度、角速度的正负; 3.当系统中既有转动物体又有平动物体时,则对转动物体按转动定律建立方程,对于平动物体按牛顿定律建立方程。
R · 定轴O 绳 v0=0 m t h 例1、一个质量为M、半径为R的定滑轮(当作均匀圆盘)上面绕有细绳,绳的一端固定在滑轮边上,另一端挂一质量为m的物体而下垂。忽略轴处摩擦,求物体m由静止下落高度h时的速度和此时滑轮的角速度。 解:
x O X dm dmg 例2、一根长为l、质量为m 的均匀细直棒,其一端有一固定的光滑水平轴,因而可以在竖直平面内转动。最初棒静止在水平位置,求它由此下摆角时的角加速度和角速度。 解:棒下摆为加速过程,外力矩为重力对O 的力矩。 棒上取质元dm,当棒处在下摆角时,重力矩为: 据质心定义
例3.匀质圆盘的质量为m,半径为R,在水平桌面上绕其中心旋转,如图所示。设圆盘与桌面之间的摩擦系数为μ,求圆盘从以角速度ω0旋转到静止需要多少时间?例3.匀质圆盘的质量为m,半径为R,在水平桌面上绕其中心旋转,如图所示。设圆盘与桌面之间的摩擦系数为μ,求圆盘从以角速度ω0旋转到静止需要多少时间? 解:以圆盘为研究对象,它受重力、桌面的支持力和摩擦力,前两个力对中心轴的力矩为零。 在圆盘上任取一个细圆环,半径为r,宽度为dr,整个圆环所受摩擦力矩等于圆环上各质点所受摩擦力矩之和。由于圆环上各个质点所受摩擦力矩的力臂都相等,力矩的方向都相同,若取ω0的方向为正方向,则整个圆环所受的力矩为
整个圆盘所受的力矩为 根据转动定律,得 角加速度为常量,且与ω0的方向相反,表明圆盘作匀减速转动 当圆盘停止转动时,ω=0,则得
四、刚体定轴转动的角动量守恒定律 若刚体所受的合外力矩为零,即M=0 角动量守恒定律:当刚体所受的的合外力矩为零,或者不受合外力的作用,则刚体的角动量保持不变。 讨论:分两种情况: 1) 如果转动惯量不变,刚体作匀速转动; 2) 如果转动惯量发生改变,则刚体的角速度随转动惯量也发生变化,但二者的乘积不变。当转动惯量变大时,角速度变小;当转动惯量变小时,角速度变大。
花样滑冰运动员的旋转表演 • 茹可夫斯基凳 • 跳水运动员
直升飞机的螺旋桨 角动量守恒定律在技术中的应用 惯性导航仪(陀螺)
自然界中存在多种守恒定律 • 动量守恒定律 • 能量守恒定律 • 角动量守恒定律 • 电荷守恒定律 • 质量守恒定律 • 宇称守恒定律等
M v0 m v 例1、如图所示,一质量为m的子弹以水平速度射入一静止悬于顶端长棒的下端,穿出后速度损失3/4,求子弹穿出后棒的角速度。已知棒长为l,质量为M。 解:以f代表棒对子弹的阻力,对子弹有: 子弹对棒的反作用力对棒的冲量矩为: 因f ’= - f由两式得
c hc l l m h=3h0/2 h’ ho a b 例2、如图所示,将单摆和一等长的匀质直杆悬挂在同一点,杆的质量m与单摆的摆锤相等。开始时直杆自然下垂,将单摆的摆锤拉到高度h0,令它自静止状态下垂,于铅垂位置和直杆作弹性碰撞。求碰撞后直杆下端达到的高度h。 解:碰撞前单摆摆锤的速度为
按机械能守恒,碰撞后摆锤达到的高度显然为 而杆的质心达到的高度满足 由此得 令碰撞后直杆的角速度为,摆锤的速度为v'。由角动量守恒,有 在弹性碰撞过程中机械能也是守恒的: 二式联立解得: