1 / 11

Cross Validation False Negatives / Negatives

Cross Validation False Negatives / Negatives. ד"ר אבי רוזנפלד. הגדרות. False Positives / Negatives. Confusion matrix 1. Confusion matrix 2. FN. Actual. Actual. FP. Predicted. Predicted. Precision (P) = 20 / 50 Recall (P) = 20 / 30. Example. Precision (A) = 50% (500/1000)

cameo
Download Presentation

Cross Validation False Negatives / Negatives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cross ValidationFalse Negatives / Negatives ד"ר אבי רוזנפלד

  2. הגדרות

  3. False Positives / Negatives Confusion matrix 1 Confusion matrix 2 FN Actual Actual FP Predicted Predicted Precision (P) = 20 / 50 Recall (P) = 20 / 30

  4. Example Precision (A) = 50% (500/1000) Recall = 83% (500/600) Accuracy = 95% (10500/11100)

  5. עוד דוגמא עם כמה קטגוריות 27 animals — 8 cats, 6 dogs, and 13 rabbits Confusion Matrix: Predicted class Actual class Cat Dog Rabbit Cat 5 3 0 Dog 2 3 1 Rabbit 0 2 11 יש 3 False Negatives של חתולים שמסויגים כמו כלבים, ויש 2 False Positives של כלבים המסווגים כמו ארנבות. ויש 2 False Positive של ארנבות שמסויגים ככלבים, ו0 False Positives של חתולים. Recall (Dog) = 3/6, Precision(Dog) = 3/8

  6. דוגמא מWEKA === Summary === Correctly Classified Instances 320 66.39 % Incorrectly Classified Instances 162 33.61 % === Detailed Accuracy By Class === Precision Recall 0.664 1 0 0 === Confusion Matrix === a b <-- classified as 320 0 | a = FALSE -> Precision (A) = 320/582), Recall = 320/320 162 0 | b = TRUE -> Precision (B) = Recall (B) = 0

  7. דוגמא נוספת (מהחיות – (zoo.arff Correctly Classified Instances 93 92.0792 % Incorrectly Classified Instances 8 7.9208 % === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure ROC Area Class 1 0 1 1 1 1 mammal 1 0 1 1 1 1 bird 0.6 0.01 0.75 0.6 0.667 0.793 reptile 1 0.011 0.929 1 0.963 0.994 fish 0.75 0 1 0.75 0.857 0.872 amphibian 0.625 0.032 0.625 0.625 0.625 0.92 insect 0.8 0.033 0.727 0.8 0.762 0.986 invertebrate === Confusion Matrix === a b c d e f g <-- classified as 41 0 0 0 0 0 0 | a = mammal 0 20 0 0 0 0 0 | b = bird 0 0 3 1 0 1 0 | c = reptile 0 0 0 13 0 0 0 | d = fish 0 0 1 0 3 0 0 | e = amphibian 0 0 0 0 0 5 3 | f = insect 0 0 0 0 0 2 8 | g = invertebrate Recall (Invertebrate) = 8/10 = 0.8, Precision = 8/11 = 0.727

  8. בעיית הOVERFITTING

  9. 10-fold cross-validation (one example of K-fold cross-validation) • 1. Randomly divide your data into 10 pieces, 1 through k. • 2. Treat the 1st tenth of the data as the test dataset. Fit the model to the other nine-tenths of the data (which are now the training data). • 3. Apply the model to the test data (e.g., for logistic regression, calculate predicted probabilities of the test observations). • 4. Repeat this procedure for all 10 tenths of the data. • 5. Calculate statistics of model accuracy and fit (e.g., ROC curves) from the test data only.

  10. תמונה

  11. ניתוח התוצאות

More Related