490 likes | 841 Views
现代宇宙学概论. 郭宗宽. 武汉 大学物理科学与技术 学院 2013.11.22. 内容. 什么是宇宙 ? 宇宙学 进展 宇宙的 组成物质 宇宙 的演化 现代宇宙学中存在 的 问题. 一 . 什么是宇宙?. 宗教与宇宙观 Aristotle (384 ~322 BC) . 尸子 : 四方 上下谓之 宇 ,古往今来谓之 宙 老子 : 道 生一、一生二、二生三、三生 万物 易传 : 太极 生两仪,两仪生四象,四象生 八卦 基督教,伊斯兰教, ….
E N D
现代宇宙学概论 郭宗宽 武汉大学物理科学与技术学院 2013.11.22
内容 • 什么是宇宙? • 宇宙学进展 • 宇宙的组成物质 • 宇宙的演化 • 现代宇宙学中存在的问题
一. 什么是宇宙? • 宗教与宇宙观 • Aristotle (384~322 BC) 尸子:四方上下谓之宇,古往今来谓之宙 老子:道生一、一生二、二生三、三生万物 易传:太极生两仪,两仪生四象,四象生八卦 基督教,伊斯兰教,… The earth was a stable object around which the Sun, Moon and other planets revolved.
Each planet moved in a circle called an epicycle, whose center was in turn carried around the earth in a second circular orbit called a deferent. • Claudius Ptolemy (90~168 AD) • Nicolaus Copernicus (1473~1543) • Johannes Kepler (1571~1630) The planets revolve around the sun and that the Sun, not the Earth, was the center of our Universe. The planets revolved around the sun in elliptical, as opposed to circular orbits and gave us the means for calculating their individual distance from the Sun.
He developed a series of telescopes, observed the Milky Way, and found it to be a multitude of tiny stars. • Galileo Galilei (1564~1642) • Sir Isaac Newton (1642~1727) He formulated the law of universal gravitation. Universal gravitation states that all objects are effected by a force, gravity, and that the strength of this force varies in accordance to the mass and distance between the objects.
He proved that many formerly known "nebulae" were actually galaxies beyond the Milky Way and determined that these other galaxies were moving away from us and each other. • Edwin Powell Hubble (1889~1953) Hubble’s law:
太阳大,地球小,地球绕着太阳跑。 地球大,月亮小,月亮绕着地球跑。
cosmological ladders 1pc = 1AU/1arcsec = 3.08610^16 m = 3.26 ly
北冕座 牧夫座 后发座 室女座 武仙座 大熊座 狮子座 啥普利座 蛇夫座 半人马座 阿贝尔座 长蛇座 金牛座 猎户座 天鸽座 矩尺座 英仙座 双鱼座 天炉座 双鱼座 鲸鱼座 时钟座 银河系 孔雀座 印第安座 玉夫座
The Andromeda Galaxy (M31): 10^10 stars, 2*10^6 ly away from our galaxy
Triangulum Galaxy (M33): 10^11 stars, 3*10^6 ly away from our galaxy
This Hubble image is a composite of data taken with three separate filters on WFC3 that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum. UGC1810 UGC1813 Apr 273
X-ray ultraviolet optical infrared composite The composite image of Arp 147: Chandra X-ray data (pink), Hubble optical data (red, green and blue), ultraviolet GALEX data (green) and infrared Spitzer data (red). http://chandra.harvard.edu/photo/2011/arp147/more.html
X-ray ultraviolet optical infrared composite The composite image of the Cartwheel Galaxy: Chandra X-ray data (purple), ultraviolet GALEX data (blue), Hubble optical data (green) and infrared Spitzer data (red). http://chandra.harvard.edu/photo/2006/cartwheel/more.html
multi-wavelength observations: • Radio: VLA, SKA • Cosmic microwave: COBE, WMAP, Planck • Infrared: WISE, Spitzer • Optical: Hubble(1990), 2dFGRS(19972002), SDSS(20002014), Euclid(2017/2018), LSST(2022 ) • Ultraviolet: GALEX • X-ray: Chandra • Gamma-ray: Fermi LAT (20MeV300Gev), H.E.S.S. (10GeV10TeV) • Cosmic ray: PAMELA, Fermi, AMS-02 • Gravitational wave: Virgo, LIGO, AIGO, LISA • Cosmic neutrino:
二. 宇宙学进展 Cosmological principle: The Universe is homogeneous and isotropic on large scales.
The geometry of the Universe • Euclidean geometry (k = 0, a flat Universe): the angles of a triangle add up to 180º, the circumference of a circle of radius r is 2r, parallel line never meet • spherical geometry (k > 0, a closed Universe): a finite size but no boundary • hyperbolic geometry (k < 0, a open Universe)
热大爆炸模型(1920s 1970s) • 标准宇宙学模型( 1980s2000s ) • 精确宇宙学时代( 2000snow )
1915, general relativity established by Albert Einstein where
1922, Alexander Friedmannfound solutions for an expanding Universe. • 1929, Edwin Powell Hubble discovered the expansion of the Universe. • 1940s, Hot Big Bang (George Gamow) For a perfect fluid,
1940s-1960s, BBN, the origin of the light elements, was completed.
1965, CMB radiation was discovered by Arno Penzias and Robert Wilson. Nobel Prize in Physics 1978
Four pieces of evidence for Hot Big Bang • the expansion of galaxies • the existence of the CMB radiation • the abundances of light elements predicted by BBN • the age of the oldest stars ( 13 Gyr)
Problems with the Hot Big Bang • the flatness problem • the horizon problem • relic particle abundances • 1981, inflation proposed by Alan Guth V (φ) reheating inflation φ
Phase transition: Old inflation, New inflation • Kinetic term: K-inflation, Tachyon inflation, G-inflation • Modified gravity: R^2-inflation, Brane-world inflation, Extended inflation • Multiple fields: Hybrid inflation (waterfall field), Assisted inflation, N-flation, Matrix-inflation, Double inflation, Curvaton-type inflation, Modulated inflation • Slow-roll parameter: Large-field inflation, Small-field inflation • Example: Chaotic inflation, Power-law inflation, Eternal inflation • Interaction: Warm inflation, Trapped inflation • Initial condition: Bounce inflation, Cyclic inflation • Particle physics: Higgs inflation, Super-natural inflation • SUSY: SUSY F-term inflation, SUSY D-term inflation, SUSY P-term inflation, SUGRA inflation • String theory: open string inflationary models: D3/brane inflation, Inflection point inflation, DBI inflation,Wilsonlineinflation, D3-D7 inflation closed string inflationary models: Racetrack inflation, N-flation, Axionmonodromy, Kahlermoduli inflation, Fibre inflation, Poly-instantoninflaiton
Hot big bang isotropy • 1989-1993, Cosmic Background Explorer (COBE), NASA Nobel Prize in Physics 2006 J.C. Mather G.F. Smoot (DMR)
1997-2002, the Two-degree-Field Galaxy Redshift Survey (2dFGRS)
1998, the discovery of the accelerating expansion of the Universe Nobel Prize in Physics 2011 Adam G. Riess Saul Perlmutter Brian P. Schmidt The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perlmutter (leader of SCP), the other half jointly to Brian P. Schmidt (leader of High-Z) and Adam G. Riess (High-Z) "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae". A.G. Riess et al., Astron. J. 116 (1998) 1009 [arXiv:astro-ph/9805201] S. Perlmutter et al., Astrophys. J. 517 (1999) 565 [arXiv:astro-ph/9812133]
Type Ia supernovae are thought to result when a white dwarf star in a binary system accumulates enough matter from its larger companion. When the white dwarf reaches the critical Chandrasekhar mass, about 1.4 times the mass of our sun, high internal density and temperature ignite a thermonuclear explosion. Because the masses of Type Ia supernovae are similar, their brightnesses are similar.
The simplest model: cosmological constant • Fine-tuning problem • Coincidence problem • Dynamical models: quintessence, cosmic axion, tracker fields, spintessence, k-essence, ghost condensate, coupled dark energy, phantom dark energy, … • Modified gravity: scalar-tensor theory, f(R) gravity, Chameleon model, DGP, massive gravity, … • Parameterizations: constantw, CPL, Chaplygin gas, … • Inhomogeneous model: LTB model, backreaction of perturbations • Anthropic principle: landscape
Six-parameter standard cosmological model • Baryon density today • Cold dark matter density today • Cosmological constant density • Optical depth to reionization • Scalar spectral index • Amplitude of the primordial curvature perturbations
2000-now, The Sloan Digital Sky Survey (SDSS) • 2000-2005, SDSS-I • 2005-2008, SDSS-II • 2008-2014, SDSS-III
2001-2010, Wilkinson Microwave Anisotropy Probe (WMAP), NASA 141°
23 GHz 33 GHz 41 GHz 61 GHz • free-free emission: electron-ion scattering • synchrotron emission: the acceleration of cosmic ray • electrons in magnetic fields • thermal emission from dust 94 GHz
foreground mask angular power spectrum of CMB
WMAP science team publications 2003, WMAP1, 14 papers, cited by 6873 records 2007, WMAP3, 5papers, cited by 5289 records 2009, WMAP5, 8papers, cited by 3527records 2011, WMAP7, 6papers, cited by 3803 records 2012, WMAP9, 2papers, cited by 303 records We have entered a new era of precision cosmology.
2009, 30 months, Planck, ESA LFI: 30,44,70 GHz HFI : 100,143,217,353,545,857 GHz • high sensitivity • wide frequency • full-sky coverage • high resolution ~7º,15′,5′
cosmological parameters the TT spectrum 20 March 2013, 29 papers
三. 宇宙的组成物质 • dark energy • dark matter • baryon • photon • neutrinos • gravitational wave
Observational evidences for dark matter rotation curve CMB anisotropies N-body simulation bullet clusters gravitational lensing Type Ia supernovae
Gravitational wave detector LIGO Hanford AIGO LIGO Livingston Virgo LISA Pulsar timing CMB
四. 宇宙的演化 • initial singularity • inflation • baryogenesis • phase transition • nucleosynthesis • radiation-matter eq. • matter-dominated • recombination • structure formation • current acceleration
五. 现代宇宙学中存在的问题 • 宇宙暴胀的本质 • 重子不对称的起源 • 宇宙暗物质的本质 • 宇宙目前的加速膨胀 • 宇宙的奇点(量子引力) • 中微子的质量 • 引力波的探测