1 / 44

Alkyne Metathesis

Michael Holtz-Mulholland Literature Meeting September 28 th 2011. Alkyne Metathesis. About Me. I ’ m from Montreal. Contents. The Reaction Mechanism Catalyst Systems Reaction Aspects Applications. Alkyne Metathesis. Exchange of termini Metal catalyzed.

carl
Download Presentation

Alkyne Metathesis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michael Holtz-Mulholland Literature Meeting September 28th 2011 Alkyne Metathesis

  2. About Me • I’m from Montreal

  3. Contents • The Reaction • Mechanism • Catalyst Systems • Reaction Aspects • Applications

  4. Alkyne Metathesis • Exchange of termini • Metal catalyzed Montreaux, A.; Blanchard, M. J. Chem. Soc. Chem. Comm., 1974, 786.

  5. Mechanism • 1981: Schrock demonstrated alkylidyne is an active species • 1982: Schrock successfully isolated a metallacyclobutadiene from metathesis conditions Wengrovius, J.H.; Sancho, J.; Schrock, R.R. J. Am. Chem. Soc. 1981, 103, 3932. Pedersen, S.F.; Schrock, R.R.; Churchill, M.R.; Wasserman, H.J. J. Am. Chem. Soc., 1982, 104, 6808.

  6. Catalyst Systems

  7. a • Mo(CO)6 and phenol • Earliest examples • Relatively stable • Low functional group tolerance • Requires high temperature • Ill-defined active species

  8. a – effect of the phenol • Grela: optimization of the phenol source • Optimal Pka between 8 and 9 Grela, K.; Ignatowska, J. Org. Lett., 2002, 4, 3747. Sashuk, V.; Ignatowska, J.; Grela, K. J. Org. Chem., 2004, 69, 7748.

  9. b • Commercially available • Highly active • First well defined catalyst • Air/moisture sensitive • Improved compatibility

  10. Synthesis of b Schrock, R.R.; Clark, D.N.; Sancho, J.; Wengrovius, J.H.; Rocklage, S.M.; Pedersen, S.F. Organometallics, 1982, 1, 1645. Listemann, M.L.; Schrock, R.R., Organometallics, 1985, 4, 74.

  11. c • Highly sensitive • Must be handled under argon • Precatalyst is capable of activating nitrogen • High reactivity • Good functional group tolerance

  12. Synthesis of c Laplaza, C.E.; Odom, A.L.; Davis, W.M.; Cummins, C.C.; Protasiewicz, J.D. J. Am. Chem. Soc., 1995, 117, 4999. Furstner, A.; Mathes, C.; Lehmann, C.W. Chem. Eur. J., 2001, 7, 5299.

  13. C synthesis of carbyne complexes • More efficient due to reductive recycle strategy • Allows access to a variety of alkylidynes Zhang, W.; Kraft, S.; Moore, J.S. Chem. Commun., 2003, 832.

  14. d • High air and moisture resistance • In situ generation of alkylidyne active species • Provides reactivity and functional group tolerance of Molybdenum carbyne complexes

  15. Synthesis of d Bindl, M.; Stade R.; Heilmann, E.K.; Picot, A.; Goddard, R. Furstner, A. J. Am. Chem. Soc., 2009, 131, 9468.

  16. Functional Group Compatibility • High lewis acidity lowers compatibility

  17. Comparison of Reactivity • Standard RCM

  18. Reaction Requirements • Substrate bearing a non-terminal alkyne • Catalyst compatible with substrate fuctional groups • Appropriate temperature • Driven by removal of byproduct • 2-Butyne requires high temperature and vacuum to remove • Formation of insoluble byproducts is more effective Zhang, W.; Moore, J.S.; J. Am. Chem. Soc., 2004, 126, 12796.

  19. Controlling the Stereochemistry of Alkenes • Reductive method controls the stereochemistry

  20. Applications of Alkyne Metathesis • Polymerization • Cross metathesis • RCM • Total Synthesis/Materials

  21. ROMP • Early examples are non-living • Effective when opening strained systems

  22. ROMP • First example • Non-living polymerization of cyclooctyne • High PDI Krouse, S.A.; Schrock, R.R. Macromolecules, 1989, 22, 2569.

  23. ROMP • Living polymerization Fischer, F.R.; Nuckolls, C. Angew. Chem. Int. Ed., 2010, 49, 7257.

  24. ROMP • Effect of phenol on living polymerization • Phenol replaces the amide ligand Fischer, F.R.; Nuckolls, C. Angew. Chem. Int. Ed., 2010, 49, 7257.

  25. Cross Metathesis • Can be highly selective • Can be pushed to completion by removal of 2-butyne

  26. Cross Metathesis • Homodimerization Furstner, A.; Mathes, C. Org. Lett., 2001, 3, 221.

  27. Cross Metathesis Kaneta, N.; Hikichi, K.; Asaka, S.; Uemaura, M.; Mori, M. Chem. Lett., 1995, 1055.

  28. Cross Metathesis Furstner, A.; Mathes, C. Org. Lett., 2001, 3, 221.

  29. Cross Metathesis • Synthesis application Furstner, A.; Dierkes, T. Org. Lett., 2000, 2, 2463.

  30. Cross Metathesis • Synthesis application Furstner, A.; Mathes, C. Org. Lett., 2001, 3, 221.

  31. Cross Metathesis Polymeriztion • Allows access to high molecular weight polymers • Copolymerization is possible • Polymers can be heavily conjugated • Useful for semiconducting materials For an overview see: Bunz, U. H. F. Acc. Chem. Res., 2001, 34, 998.

  32. Cross Metathesis Polymerization • Conjugated polymers Kloppenburg, L.; Song, D.; Bunz, U.H.F. J. Am. Chem. Soc., 1998, 120, 7973. See also: Zhang, W.; Moore, J.S. Macromolecules, 2004, 37, 3973. Brizius, G.; Kroth, S.; Bunz, U.H.F. Macromolecules, 2002, 35, 5317.

  33. Cross Metathesis Polymerization • Copolymers Brizius, G.; Kroth, S.; Bunz, U.H.F. Macromolecules, 2002, 35, 5317.

  34. RCM • Allows access to the Z olefin via subsequent metathesis/reduction reactions • Useful for controlling the geometry of macrocyclic products

  35. RCM Furstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108.

  36. RCM Furstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108.

  37. RCM in Synthesis • Alkyne used to give access to the Z isomer Furstner, A.; Grela K. Angew. Chem. Int. Ed., 2000, 39, 1234.

  38. RCM in Synthesis • Alkyne used to form exclusively the E isomer Furstner, A.; Bonnekessel, M.; Blank, J. T.; Radkowski, K.; Seidel, G.; Lacombe, F.; Gabor, B.; Mynott, R. Chem. Eur . J., 2007, 13, 8762.

  39. RCM in Synthesis Furstner, A.; Castanet, A.-S.; Radkowski, K.; Lehmann, C. W. J. Org. Chem. 2003, 68, 1521.

  40. RCM in Synthesis Benson, S.; Collin, M-P.; Arlt, A.; Gabor, B.; Goddard, R.; Furstner, A. Angew. Chem. Int. Ed., 2011, 50, 8739.

  41. Cyclooligomerization • Requires high dilution to be efficient • Early example shown • 0.19 M Ge, P.-H.; Fu, W.; Herrmann, W.A.; Herdtweck, E.; Campana, C.; Adams, R.D.; Bunz, U.H.F. Angew. Chem. Int. Ed., 2000, 39, 3607.

  42. Cyclooligomerization Pschirer, N.G.; Fu, W.; Adams, R.D.; Bunz, U.H.F Chem. Comm., 2000, 87.

  43. Cyclooligomerization • Byproduct precipitates to drive the reaction • Major increase in isolated yield • No need to remove butyne at high temperature Zhang, W.; Moore, J.S.; J. Am. Chem. Soc., 2004, 126, 12796.

  44. Summary • Allows selective access to E or Z olefins • Selective ring closing in the presence of alkenes • Alkyne can be used to perform many synthetically useful transformations • Gives easy access to useful heavily conjugated materials

More Related