560 likes | 669 Views
Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, 2002. Goal of this chapter. Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis
E N D
Digital Integrated CircuitsA Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002
Goal of this chapter • Present intuitive understanding of device operation • Introduction of basic device equations • Introduction of models for manual analysis • Introduction of models for SPICE simulation • Analysis of secondary and deep-sub-micron effects • Future trends
B A Al SiO 2 p n Cross-section of pn -junction in an IC process A Al A p n B B One-dimensional representation diode symbol The Diode Mostly occurring as parasitic element in Digital ICs
Forward Bias Typically avoided in Digital ICs
Reverse Bias The Dominant Operation Mode
Secondary Effects 0.1 ) A ( 0 D I –0.1 –25.0 –15.0 –5.0 0 5.0 V (V) D Avalanche Breakdown
|V | GS A Switch! An MOS Transistor What is a Transistor?
The MOS Transistor Polysilicon Aluminum
MOS Transistors -Types and Symbols D D G G S S Depletion NMOS Enhancement NMOS D D G G B S S NMOS with PMOS Enhancement Bulk Contact
-4 x 10 6 VGS= 2.5 V 5 Resistive Saturation 4 VGS= 2.0 V Quadratic Relationship (A) 3 VDS = VGS - VT D I 2 VGS= 1.5 V 1 VGS= 1.0 V 0 0 0.5 1 1.5 2 2.5 V (V) DS Current-Voltage RelationsA good ol’ transistor
Pinch-off Transistor in Saturation
-4 x 10 2.5 VGS= 2.5 V Early Saturation 2 VGS= 2.0 V 1.5 Linear Relationship (A) D I VGS= 1.5 V 1 VGS= 1.0 V 0.5 0 0 0.5 1 1.5 2 2.5 V (V) DS Current-Voltage RelationsThe Deep-Submicron Era
5 u = 10 sat ) s / m ( n u x = 1.5 x (V/µm) c Velocity Saturation Constant velocity Constant mobility (slope = µ)
Perspective I D Long-channel device V = V GS DD Short-channel device V V - V V DSAT GS T DS
-4 x 10 -4 x 10 6 2.5 5 2 4 1.5 (A) 3 (A) D D I I 1 2 0.5 1 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 V (V) V (V) GS GS ID versus VGS linear quadratic quadratic Long Channel Short Channel
-4 -4 x 10 x 10 2.5 6 VGS= 2.5 V VGS= 2.5 V 5 2 Resistive Saturation VGS= 2.0 V 4 VGS= 2.0 V 1.5 (A) (A) 3 D D VDS = VGS - VT I I VGS= 1.5 V 1 2 VGS= 1.5 V VGS= 1.0 V 0.5 1 VGS= 1.0 V 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 V (V) V (V) DS DS ID versus VDS Long Channel Short Channel
G S D B A unified modelfor manual analysis
-4 x 10 2.5 VDS=VDSAT 2 VelocitySaturated 1.5 Linear 1 VDSAT=VGT 0.5 VDS=VGT Saturated 0 0 0.5 1 1.5 2 2.5 Simple Model versus SPICE (A) D I V (V) DS
-4 x 10 0 -0.2 -0.4 (A) D I -0.6 -0.8 -1 -2.5 -2 -1.5 -1 -0.5 0 V (V) DS A PMOS Transistor VGS = -1.0V VGS = -1.5V VGS = -2.0V Assume all variables negative! VGS = -2.5V
Polysilicongate Source Drain W x x + + n n d d Gate-bulk L d overlap Top view Gate oxide t ox + + n n L Cross section The Gate Capacitance
Gate Capacitance Cut-off Resistive Saturation Most important regions in digital design: saturation and cut-off
Gate Capacitance Capacitance as a function of the degree of saturation Capacitance as a function of VGS (with VDS = 0)
Diffusion Capacitance Channel-stop implant N 1 A Side wall Source W N D Bottom x Side wall j Channel L Substrate N S A
Linearizing the Junction Capacitance Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest
The Sub-Micron MOS Transistor • Threshold Variations • Subthreshold Conduction • Parasitic Resistances
V V T T Threshold Variations Low V threshold Long-channel threshold DS VDS L Threshold as a function of Drain-induced barrier lowering the length (for low V ) (for low L ) DS
-2 10 Linear -4 10 -6 Quadratic 10 (A) D I -8 10 Exponential -10 10 VT -12 10 0 0.5 1 1.5 2 2.5 V (V) GS Sub-Threshold Conduction The Slope Factor S is DVGS for ID2/ID1 =10 Typical values for S: 60 .. 100 mV/decade
Sub-Threshold ID vs VGS VDS from 0 to 0.5V