1 / 29

銀河団からのガンマ線放射

銀河団からのガンマ線放射. 戸谷 友則 (京大理) CANGAROO 望遠鏡によるガンマ線天文学の新展開 京都大学、平成15年12月12日. Plan of the talk. 銀河団からのガンマ線: 理論レビュー EGRET  での検出可能性  --- 未同定天体の中にガンマ線銀河団はあるか? TeV 観測の可能性. 銀河団からのガンマ線. ショックと高エネルギー粒子生成 銀河からの宇宙線の漏れ出し (<10 43 erg/s) AGN (~10 44 erg/s) 銀河団形成、合体などの構造形成時のショック (~10 44 erg/s)

carlow
Download Presentation

銀河団からのガンマ線放射

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 銀河団からのガンマ線放射 戸谷 友則 (京大理) CANGAROO 望遠鏡によるガンマ線天文学の新展開 京都大学、平成15年12月12日

  2. Plan of the talk • 銀河団からのガンマ線: 理論レビュー • EGRET での検出可能性 --- 未同定天体の中にガンマ線銀河団はあるか? • TeV 観測の可能性

  3. 銀河団からのガンマ線 • ショックと高エネルギー粒子生成 • 銀河からの宇宙線の漏れ出し (<1043 erg/s) • AGN (~1044 erg/s) • 銀河団形成、合体などの構造形成時のショック (~1044 erg/s) • 放射機構 • ハドロン起源 • 陽子衝突、π生成 • π0 ガンマ、二次電子 • e.g. Colafrancesco & Blasi 1998 • (1次)電子起源 • 逆コンプトン • e.g. Totani & Kitayama 2000

  4. ハドロン v.s. 電子 • 銀河団ガスの典型的密度 ~10-3 cm-3 << ISM in MW • pp reaction time scale: • (n σpp c)-1 ~ 3.3 x 1010 (n/10-3cm-3)-1 yr • CMB photon density --- universal! • IC energy loss time scale: • tcool = 2×106 (εγ/GeV)-1/2 yr << cluster age • Electron Lorentz factor • IC(CMB), GeV: γe =1.1x106 (εγ/GeV)1/2 • Synch: γe =1.9x104 (ν/GHz)1/2(B/μG)-1/2 • 同じエネルギーが注入されれば、 • LIC >> Lpp • Active time scale: IC << pp

  5. Model prediction for pp-gamma Typical EGRET limit Colafrancesco & Blasi 1998

  6. Prediction for IC gamma-ray clusters Totani & Kitayama 2000 ApJ, 545, 572 • Standard ΛCDM universe • Dark halo formation rate dn(M, z)/dt • Time-differenciation of the Press Schechter, Sasaki ’94, Kitayama & Suto ’96 • 5% injection of the total gravitational energy of bayron gas into electrons • Electron energy spectrum: dN/dε ∝ε-2 • εγ,max~6 (B/uG) V10002 TeV • tcool = 2×106 (εγ/GeV)-1/2 yr • Lγ = Eγ / tdyn

  7. Properties of IC gamma-ray clusters • M~1015 Msun, z ~ 0.05-0.1 • Very short electron cooling time • 100 Myr for GeV gamma-ray emitting electrons • Much shorter than dynamical time ( ~Gyr) • c.f. gamma-rays from hadronic processes • Gamma-ray emission only from clusters with active shocks soon after dynamical formation • An interesting probe of dynamical processes of structure formation • In sharp contrast to longer time-scale emissions: • Thermal x-ray emission • Gamma-rays from hadronic processes

  8. 5% energy injection: reasonable? • Generally it is believed that supernova remnants produce cosmic-ray hadrons with efficiency of ~10% • Energy flux of cosmic-ray electrons to the earth is only a few percent of protons. • Propagation effect? • Some indications for ~5% injection to electrons as well • Radio flux from supernova remnants (e.g., Blandford & Eichler 1987) • EUV/hard X-ray emission from clusters of galaxies (e.g., Sarazin 2001)

  9. Some recent numerical studies • Keshet et al. 2003 • ~10% contribution to extragalactic gamma-ray background • Cannot explain all isotropic unidentified EG sources (~60) • 5% efficiency assumed. • Berrington & Dermer 2003 • A few unidentifed EGRET sources possible

  10. EGRET all sky survey (>100MeV)

  11. EGRET source catalog

  12. Unidentified sources: • Low galactic latitude (|b|<10°) • Supernova remnants • pulsars • Early stars and winds • mid galactic latitude (10°<| b| < 45°) • Associated with the Gould belt • Soft spectrum, steady source • Pulsars? • High galactic latitude (45°< |b|) • Variable sources  probably AGNs • ~7 steady sources

  13. Can we find gamma-ray clusters in other wavelength? • No significant correlation between un-ID EGRET sources and Abell or ROSAT clusters • Not all un-ID EGRET sources should contain detectable clusters in other wavelength • z ~0.05: comparable with the depth of Abell/ROSAT all-sky clusters • Contamination of AGNs in high-latitude EGRET sources • Forming/merging clusters may be more extended or not concentrated to the center  more difficult to detect • Gamma-rays expected only from dynamically forming/merging clusters. • Not all clusters should be visible in gamma-rays • Merging signatures in radio or X-ray bands have longer time scale than in gamma-rays

  14. Search for gamma-ray clusters in the EGERET error circles • Search for forming/merging clusters by optical galaxy catalog (Kawasaki & Totani 2002, ApJ in press) • Automated matched-filter search of galaxy clustering • More systematic than the Abell catalog • Search performed on high-latitude, steady un-ID EGRET sources • 7 sources exist in the steady source catalog of Gehrels et al. • We expect multiple groups or clusters of galaxies closely interacting, from hierarchical structure formation, rather than a single well-stabilized big cluster

  15. Search for merging clusters in EGRET circles • Seven steady, |b|>45°unidentified sources • Correlation with Abell clusters: • 5 out of 7 associated with Abell clusters (1.7 sigma) • Expected number by chance: 2.4 +/- 1.5 • 4076 clusters / 8.25 str • < theta95> = 0.85 degree for EGRET sources • 0.34 cluster per 1 EGRET circle

  16. Matched filter search of galaxy clusters α(deg)

  17. Matched filter search of galaxy clusters (2) • Number of (single) clusters: • 21 clusters found in 20.07□2 field around EGRET sources • Control field: 133 clusters in 162.86□2 field • Excess: (21-16.4)/16.41/2 = 1.6σ • Cluster pairs/groups (CPGs) • Expected from hierarchical structure formation • Angular diameter < 2 Mpc/h • Same z within uncertainty (typically 20%) • z < 0.1

  18. Matched-filter search for galaxy clusters (3) 6 cluster pairs/groups within 1 deg from centers of EGRET sources

  19. Statistics of cluster pairs/groups • 6 CPGs associated with 7 un-ID sources within 1 deg from the centers of EGRET sources • 6 per 20.07 □2 • Control field: • 12 per 162.86□2 field • Excess: • (6 – 1.5) / 1.51/2 = 3.7 σ • Chance probability from Poisson statistics: 0.4%

  20. Properties of cluster pairs/groups • Half of the 6 CPGs do not include any Abell clusters, but complexes of relatively small clusters • ‘forming cluster’? • Relatively large total richness/mass • C= 79, 109, 128, 165, 206, 217 ~ 1015 Msun • The mass and z consistent with Totani-Kitayama calculation • Considerably larger than those in the control field: • 62, 67, 90, 91, 92, 99, 102, 110, 111, 114, 119, 154 • Chance probability of the same distribution: 8.0%

  21. Detectability of TeV gamma-rays • Maximum gamma-ray energy: • B~ 0.1 μG typically observed in clusters • V~1000 km/s for typical clusters • Spectrum extends to this energy with dN/dE ∝E-2 • Motivation of CANGAROO observation: • Detect extended TeV gamma-rays • Expected size of emission region <~ 1 degree • Image comparison with optical galaxy catalog

  22. TeV Flux estimate for 3EG 1234-1318 • 3EG 1234-1318: • Hard spectral index of 2.09 +/- 0.24 • Rich structure from optical galaxy catalog • EGRET: 7.3×10-8 cm-2s-1 • VHE flux 3.2×10-12 cm-2s-1 (>TeV, α=2.09) • = 3.5×10-13 cm-2s-1 (α=2.09+0.24) • = 2.9×10-11 cm-2s-1 (α=2.09-0.24)

  23. Suggested TeV Observation Targets • Observability from CANGAROO • Spectral index should be hard • No variability evidence • Rich structure in the optical richness map

  24. Matched filter search of galaxy clusters α(deg)

  25. Additional objects at 30<|b|<45 deg

  26. 他の最近の観測的研究へのコメント • Colafrancesco 2002 • UID EGRET sources と Abell cluster に相関 • ガンマ、X、電波強度に相関 • 読んではいけない • Scharf & Mukherjee 2002 • EGRET data と Abell clusters を直接比較、相関 • Reimer et al. とは矛盾 • Reimer et al. 2003 • X-ray selected clusters と EGRET ソースに相関なし • 全ての銀河団を一緒にして上限値 • <6 x 109 cm-2 s-1 for E>100 MeV

  27. Effect of preheating of intergalactic medium • Cluster L-T relation suggests preheating of intergalactic gas by external entropy sources Self-similar

  28. Effect of preheating of intergalactic medium(2) • Preheating effects on high energy gamma-rays: • Reduced gravitational energy • Softening of spectrum by weakened shock • Gamma-ray background is suppressed by a factor of 30 • 5-10 Gamma-ray clusters still detectable by EGRET Totani & Inoue (2001)

More Related