1 / 50

Global Positioning System: what it is and how we use it for measuring the earth’s movement.

Global Positioning System: what it is and how we use it for measuring the earth’s movement. April 21, 2011. References. Lectures from K. Larson’s “Introduction to GNSS” http://www.colorado.edu/engineering/ASEN/asen5090/

carney
Download Presentation

Global Positioning System: what it is and how we use it for measuring the earth’s movement.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Global Positioning System: what it is and how we use it for measuring the earth’s movement. April 21, 2011

  2. References • Lectures from K. Larson’s “Introduction to GNSS” http://www.colorado.edu/engineering/ASEN/asen5090/ • Strang, G. and K. Borre “Linear Algebra, Geodesy, and GPS”, Wellesley-Cambridge Press, 1997 • Blewitt, G., “Basics of the GPS Technique: Observation Equations”, in “Geodetic Applications of GPS” • http://www.kowoma.de/en/gps/index.htm • http://www.kemt.fei.tuke.sk/predmety/KEMT559_SK/GPS/GPS_Tutorial_2.pdf • Lecture notes from G. Mattioli’ (comp.uark.edu/~mattioli/geol_4733/GPS_signals.ppt)

  3. Basics of how it works • Trilateration • GPS positioning requires distance to 4 satellites • x,y,z,t • Earth centered, Earth Fixed • Why t? • What are some of reasons why measuring distance is difficult? • How do we know x, y, z, t of satellites?

  4. GPS: Space segment • Several different types of GPS satellites (Block I, II, II A, IIR) • All have atomic clocks • Stability of at least 10-13 sec 1 sec every ~300,000 yrs • Dynamics of orbit? • Reference point?

  5. Orbital Perturbations – (central force is 0.5 m/s2) From K. Larson

  6. GPS: Space Segment • 24+ satellites in orbit • Can see 4 at any time, any point on earth • Satellites never directly over the poles • For most mid-latitude locations, satellites track mainly north-south

  7. GPS: Satellite Ground Track

  8. GPS Signal • Satellite transmits on two carrier frequencies: • L1 (wavelength=19 cm) • L2 (wavelength=24.4 cm) • Transmits 3 different codes/signals • P (precise) code • Chip length=29.3 m • C/A (course acquisition) code • Chip length=293 m • Navigation message • Broadcast ephemeris (satellite orbital parameters), SV clock corrections, iono info, SV health

  9. GPS Signal • Signal phase modulated: vs Amplitude modulation (AM) Frequency modulation (FM)

  10. C/A and P code: PRN Codes • PRN = Pseudo Random Noise • Codes have random noise characteristics but are precisely defined. • A sequence of zeros and ones, each zero or one referred to as a “chip”. • Called a chip because they carry no data. • Selected from a set of Gold Codes. • Gold codes use 2 generator polynomials. • Three types are used by GPS • C/A, P and Y

  11. PRN Codes: first 100 bits

  12. PRN Code properties • High Autocorrelation value only at a phase shift of zero. • Minimal Cross Correlation to other PRN codes, noise and interferers. • Allows all satellites to transmit at the same frequency. • PRN Codes carry the navigation message and are used for acquisition, tracking and ranging.

  13. PRN Code Correlation

  14. Non-PRN Code Correlation

  15. Schematic of C/A-code acquisition Since C/A-code is 1023 chips long and repeats every 1/1000 s, it is inherently ambiguous by 1 msec or ~300 km.

  16. BASIC GPS MEASUREMENT: PSEUDORANGE • Receiver measures difference between time of transmission and time of reception based on correlation of received signal with a local replica The measured pseudorange is not the true range between the satellite and receiver. That is what we clarify with the observable equation.

  17. PSEUDORANGE OBSERVABLE MODEL

  18. CARRIER PHASE MODEL

  19. COMPARE PSEUDORANGE and CARRIER PHASE • bias term N does not appear in pseudorange • ionospheric delay is equal magnitude but opposite sign • troposphere, geometric range, clock, and troposphere errors are the same in both • multipath errors are different (phase multipath error much smaller than pseudorange) • noise terms are different (factor of 100 smaller in phase data)

  20. Atmospheric Effects • Ionosphere (50-1000 km) • Delay is proportional to number of electrons • Troposphere (~16 km at equator, where thickest) • Delay is proportional to temp, pressure, humidity.

  21. Vertical Structure of Atmosphere

  22. Tropospheric effects • Lowest region of the atmosphere – index of refraction = ~1.0003 at sea level • Neutral gases and water vapor – causes a delay which is not a function of frequency for GPS signal • Dry component contributes 90-97% • Wet component contributes 3-10% • Total is about 2.5 m for zenith to 25 m for 5 deg

  23. Tropospheric effects At lower elevation angles, the GPS signal travels through more troposphere.

  24. Dry Troposphere Delay Saastamoinen model: • P0 is the surface pressure (millibars) • f is the latitude • h is the receiver height (m) Hopfield model: • hd is 43km • T0 is temperature (K) Mapping function: • E – satellite elevation ~2.5 m at sea level 1 (zenith) – 10 (5 deg)

  25. Wet Troposphere Correction Less predictable than dry part, modeled by: Saastamoinen model: Hopfield model: • hw is 12km • e0 is partial pressure of water vapor in mbar Mapping function: 0 – 80 cm

  26. Examples of Wet Zenith Delay

  27. Ionosphere effects • • Pseudorange is longer – “group delay” • • Carrier Phase is shorter – “phase advance” TEC = Total Electron Content

  28. Determining Ionospheric Delay Where frequencies are expressed in GHz, pseudoranges are in meters, and TEC is in TECU’s (1016 electrons/m2)

  29. Ionosphere maps

  30. Ionosphere-free Pseudorange Ionosphere-free pseudoranges are more noisy than individual pseudoranges.

  31. Multipath • Reflected signals • Can be mitigated by antenna design • Multipath signal repeats with satellite orbits and so can be removed by “sidereal filtering”

  32. Standard Positioning Error Budget UERE = User Equivalent Range Error

  33. Intentional Errors in GPS • S/A: Selective availability • Errors in the satellite orbit or clock • Turned off May 2, 2000 With SA – 95% of points within 45 m radius. SA off, 95% of points within 6.3 m • Didn’t effect the precise measurements used for tectonics that much. Why not?

  34. Intentional Errors in GPS • A/S: Anti-spoofing • Encryption of the P code (Y code) • Different techniques for dealing with A/S • Recover L1, L2 phase • Can recover pseudorange (range estimated using P-code) • Generally worsens signal to noise ratio

  35. AS Technologies Summary Table Ashtech Z-12 & µZ Trimble 4000SSi From Ashjaee & Lorenz, 1992

  36. PSEUDORANGE OBSERVABLE MODEL

  37. EXAMPLE OF PSEUDORANGE (1)

  38. EXAMPLE OF PSEUDORANGE (2)

  39. GEOMETRIC RANGE • Distance between position of satellite at time of transmission and position of receiver at time of reception

  40. PSEUDORANGE minus GEOMETRIC RANGE • Difference is typically dominated by receiver clock or satellite clock.

  41. L1 PSEUDORANGE - L2 PSEUDORANGE • Differencing pseudoranges on two frequencies removes geometrical effects, clocks, troposphere, and some ionosphere

  42. Geometry Effects: Dilution of Precision (DOP) Good Geometry Bad Geometry

  43. Dilution of Precision Covariance is purely a function of satellite geometry

  44. Dilution of Precision

  45. Positioning • Most basic: solve system of range equations for 4 unknowns, receiver x,y,z,t P1 = ( (x1 - x)2 + (y1 - y)2 + (z1 - z)2 )1/2 + ct - ct1 … P4 = ( (x4 - x)2 + (y4 - y)2 + (z4 - z)2 )1/2 + ct - ct4 • Linearize problem by using a reference, or a priori, position for the receiver • Even in advanced software, need a good a priori position to get solution.

  46. Positioning vs. Differential GPS • By differencing observations at two stations to get relative distance, many common errors sources drop out. • The closer the stations, the better this works • Brings precision up to mm, instead of m.

  47. Single Differencing • Removes satellite clock errors • Reduces troposphere and ionosphere delays to differential between two sites • Gives you relative distance between sites, not absolute position

  48. Double Differencing • Receiver clock error is gone • Random errors are increased (e.g., multipath, measurement noise) • Double difference phase ambiguity is an integer

  49. High precision GPS for Geodesy • Use precise orbit products (e.g., IGS or JPL) • Use specialized modeling software • GAMIT/GLOBK • GIPSY-OASIS • BERNESE • These software packages will • Estimate integer ambiguities • Reduces rms of East component significantly • Model physical processes that effect precise positioning, such as those discussed so far plus • Solid Earth Tides • Polar Motion, Length of Day • Ocean loading • Relativistic effects • Antenna phase center variations

  50. High precision GPS for Geodesy • Produce daily station positions with 2-3 mm horizontal repeatability, 10 mm vertical. • Can improve these stats by removing common mode error.

More Related