1 / 77

Compilers

Compilers. 4. Bottom-up Parsing Chih-Hung Wang. References 1. C. N. Fischer and R. J. LeBlanc. Crafting a Compiler with C. Pearson Education Inc., 2009. 2. D. Grune, H. Bal, C. Jacobs, and K. Langendoen. Modern Compiler Design. John Wiley & Sons, 2000.

carolinem
Download Presentation

Compilers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Compilers 4. Bottom-up Parsing Chih-Hung Wang References 1. C. N. Fischer and R. J. LeBlanc. Crafting a Compiler with C. Pearson Education Inc., 2009. 2. D. Grune, H. Bal, C. Jacobs, and K. Langendoen. Modern Compiler Design. John Wiley & Sons, 2000. 3. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986. (2nd Ed. 2006)

  2. rest_expression expression term rest_expr IDENT IDENT IDENT  aap + ( noot + mies ) Creating a bottom-up parser automatically • Left-to-right parse, Rightmost-derivation • create a node when all children are present • handle: nodes representing the right-hand side of a production

  3. LR(0) Parsing • Theoretically important but too weak to be useful. • running example: expression grammar input expression EOF expression  expression ‘+’ term | term term  IDENTIFIER | ‘(’ expression ‘)’ • short-hand notation Z  E $ E  E ‘+’ T | T T  i | ‘(’ E ‘)’

  4. Z   E $ E   E ‘+’ T E   T T   i T   ‘(’ E ‘)’ LR(0) Parsing • keep track of progress inside potential handles when consuming input tokens • LR items: N   • initial set S0 Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’

  5.  Closure algorithm for LR(0) The important part is the inference rule; it predicts new handle hypotheses from the hypothesis that we are looking for a certain non-terminal, and is sometimes called prediction rule; it corresponds to an  move, in that it allows the automation to move to another state without consuming input. Reduce item: an item with the dot at the end Shift item: the others

  6. S0 Z   E $ E   E ‘+’ T E   T T   i T   ‘(’ E ‘)’ S3 Z  E  $ E  E  ‘+’ T S5 E  E + T  Transition Diagram S2 T E  T  i S1 T  i  E i S4 E  E ‘+’  T T   i T   ‘(’ E ‘)’ ‘+’ $ T S6 Z  E $ 

  7. input i + i $ stack S0 LR(0) parsing example (1) Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ • shift input token (i) onto the stack • compute new state

  8. LR(0) parsing example (2) Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 i S1 + i $ • reduce handle on top of the stack • compute new state

  9. LR(0) parsing example (3) • reduce handle on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 T S2 + i $ i

  10. LR(0) parsing example (4) • shift input token on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 E S3 + i $ T i

  11. LR(0) parsing example (5) • shift input token on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 E S3 + S4 i $ T i

  12. LR(0) parsing example (6) • reduce handle on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 E S3 + S4 i S1 $ T i

  13. LR(0) parsing example (7) • reduce handle on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 E S3 + S4 T S5 $ T i i

  14. LR(0) parsing example (8) • shift input token on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 E S3 $ E + T T i i

  15. LR(0) parsing example (9) • reduce handle on top of the stack • compute new state Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 E S3 $ S6 E + T T i i

  16. LR(0) parsing example (10) • accept! Z  E $ E  E ‘+’ T E  T T  i T  ‘(’ E ‘)’ stack input S0 Z E $ E + T T i i

  17. Precomputing the item set (1) • Initial item set

  18. Precomputing the item set (2) • Next item set

  19. Complete transition diagram

  20. The LR push-down automation • Two major moves and a minor move • Shift move • Remove the first token from the present input and pushes it onto the stack • Reduce move • N ->  •  are moved from the stack • N is then pushed onto the stack • Termination • The input has been parsed successfully when it has been reduced to the start symbol.

  21. GOTO and ACTION tables

  22. LR(0) parsing of the input i+i$

  23. Another Example of LR(0) from Fischer (1)—closure0 G1 example

  24. Another Example of LR(0) from Fischer (2) G2 example • S'S$ • SID|

  25. Another Example of LR(0) from Fischer (3)

  26. Another Example of LR(0) from Fischer (4)

  27. Algorithm of LR(0) Construction (1)-goto Function

  28. Algorithm of LR(0) Construction (2)- CFSM

  29. Algorithm of LR(0) Construction (3)- goto Table

  30. LR comments • The bottom-up parsing, unlike the top-down parsing, has no problems with left-recursion. • On the other hand, bottom-up parsing has a slight problem with right-recursion.

  31. LR(0) conflicts (1) • shift-reduce conflict • Exist in a state when table construction cannot use the next k tokens to decide whether to shift the next input token or call for a reduction. • array indexing: T  i [ E ] T  i [ E ](shift) T  i(reduce) • -rule: RestExpr  Expr  Term  RestExpr (shift) RestExpr  (reduce)

  32. LR(0) conflicts (2) • reduce-reduce conflict • Exist when table construction cannot use the next k tokens to distinguish between multiple reductions that cannot be applied in the inadequate state. • assignment statement: Z  V := E $ V  i (reduce) T  i (reduce) (Different reduce rules) • typical LR(0) table contains many conflicts

  33. Handling LR(0) conflicts • Use a one-token look-ahead • Use a two-dimensional ACTION table • different construction of ACTION table • SLR(1) – Simple LR • LR(1) • LALR(1) – Look-Ahead LR

  34. SLR(1) parsing • A handle should not be reduced to a non-terminal N if the look-ahead is a token that cannot follow N. • reduce N  iff token FOLLOW(N) • FOLLOW(N) • FOLLOW(Z) = { $ } • FOLLOW(E) = { ‘+’, ‘)’, $ } • FOLLOW(T) = { ‘+’, ‘)’, $ }

  35. SLR(1) ACTION table shift

  36. SLR(1) ACTION/GOTO table 1: Z  E $ 2: E  T 3: E  E ‘+’ T 4: T  i 5: T  ‘(’ E ‘)’ s7 sn – shift to state n rn – reduce rule n

  37. Example of resolving conflicts (1) • A new rule T  i [E] 1: Z  E $ 2: E  T 3: E  E ‘+’ T 4: T  i 5: T  ‘(’ E ‘)’ 6: T  i ‘[‘ E ‘]’

  38. Example of resolving conflicts (2) 1: Z  E $ 2: E  T 3: E  E ‘+’ T 4: T  i 5: T  ‘(’ E ‘)’ 6: T  i ‘[‘ E ‘]’ s5 T  i. T  i. [E]

  39. Another Example of LR(0) Conflicts(1)

  40. Another Example of LR(0) Conflicts(2)

  41. Another Example of LR(0) Conflicts(3) num plus num times num $

  42. Another Example of LR(0) Conflicts(4) Follow(E)= {plus, $}

  43. Unfortunately … • SLR(1) leaves many shift-reduce conflicts unsolved • problem: FOLLOW(N) set is a union of all all look-aheads of all alternatives of N in all states • example S  A | x b A  a A b | B B  x Follow (S)={$} Follow(A) = {b, $} Follow(B) = {b, $}

  44. SLR(1) automation

  45. Another Example of SLR Problem Follow(A)={b, c, $}

  46. Make the Grammar SLR(1) Follow(A1)={b, $}

  47. Another Example 2 of SLR(1) (1) G3: SE$ EE+T|T TT*P|P PID|(E)

  48. Another Example 2 of SLR(1) (2) G3: SE$ EE+T|T TT*P|P PID|(E) • SLR(1) Action Table for G3 Follow(E)={$+)} Follow(T)={$+)*}

  49. SLR(1) Conflicts Ex2 Elem(List, Elem) ElemScalar ListList,Elem List Elem Scalar ID Scalar(Scalar) Fellow(Elem)={“)”,”,”,….}

  50. LR(1) parsing • The LR(1) technique does not rely on FOLLOW sets, but rather keeps the specific look-ahead with each item • LR(1) item: N   {} •  - closure for LR(1) item sets: if set S contains an item P  N  {} then for each production rule N   S must contain the item N   {} where  = FIRST(  {} )

More Related