1 / 12

Digital Transmission Via Carrier Modulation

Digital Transmission Via Carrier Modulation. Carrier Phase Modulation BPSK(Binary PSK) : M=2 QPSK(Quadrature PSK): M=4 MPSK(M-ary PSK): M > 2. Transmitting filter pulse shape Amplitude. Carrier Phase Modulation.

carrie
Download Presentation

Digital Transmission Via Carrier Modulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Digital Transmission Via Carrier Modulation Carrier Phase Modulation BPSK(Binary PSK) : M=2 QPSK(Quadrature PSK): M=4 MPSK(M-ary PSK): M > 2

  2. Transmitting filter pulse shape Amplitude Carrier Phase Modulation • Carrier phase is used to transmit digital information via digital phase modulation • M-ary phase modulation (M=2k) • Binary phase modulation (M=2) • M carrier phase modulated signal waveform

  3. Constant envelope PSK(Phase Shift Keying) • Digital phase modulation is called PSK • PSK signals have equal energy • See Figure 7.7 page 289 • Normalized power case (Rectangular gT(t)) •  

  4. PSK with 2 orthogonal basis • Changing representation of waveform • Two orthogonal basis: • PSK can be represented geometrically as two-dimensional with components

  5. M=2 M=4 M=8 01 00 011 001 010 000 100 110 11 10 101 111 Same as binary PAM with antipodal signals Constellation of PSK • Two dimensional Why Gray code is used ?

  6. Phase demodulation and detection • Received signal through AWGN channel • Optimal Receiver • Two correlator (or Matched Filter) • Two dimensional Signal • Optimum Detector

  7. Sample & Hold Phase Comparator PSK in Osc. Sample & Hold Optimum Receiver for PSK • Two Correlator

  8. Noise component • Because nc(t) and ns(t) are uncorrelated zero mean Gaussian process • Zero mean: • With variance: • Example of M=4 What do you think is optimal detector ??

  9. Optimal Detector • Example of M=4 • Phase of received signal:

  10. Probability of Error • Hard to get closed-form expression • M=2 case • Same as binary PAM : • Where is energy per bit • M>4 case • Approximation: • Equivalent bit-error probability for M-ary PSK • Approximation: • See figure 7.10 page 293, for Probability of Symbol error for M-ary PSK

  11. DPSK(Differential PSK) • Differential coding + PSK • Easy to implement receiver • No estimation of carrier phase is required • No needs of PLL or Costas loop • See Chapter 7.0 for details • See figure 7.14 page 300, for Probability of error • Binary DPSK is 3dB poorer than Binary PSK • Performance Vs. Easy to implement

  12. Homework • Illustrative Problem • 7.2, 7.3, 7.4, 7.5 • Problems • 7.7, 7.9

More Related