300 likes | 472 Views
Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells Assunta Marrocchi,* Daniela Lanari,Antonio Facchetti and Luigi Vaccaro* Energy Environ. Sci ., 2012 , 5 , 8457-8474. Teacher: Guey-Sheng Liou Student: Yu-Ting Huang Date:2013/11/15. Outline.
E N D
Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cellsAssunta Marrocchi,* Daniela Lanari,Antonio Facchetti and Luigi Vaccaro*Energy Environ. Sci., 2012, 5, 8457-8474 Teacher:Guey-ShengLiou Student: Yu-Ting Huang Date:2013/11/15
Outline • Introduction • Metal-assisted cross-coupling reactions Nickel-catalyzed coupling polymerization Palladium-catalyzed coupling polymerizations • Oxidative coupling polymerization • BHJ photovoltaic cells incorporating regioregular P3HTs • Conclusions
Solar Cells Single crystalline Crystalline Poly crystalline Silicon Amorphous Ш-Ѵ (GaAs, InP) Compound Solar cell II-ѴI (CdS, CdTe) OSCs Organic Dye-sensitized
Advantages of Organic Solar Cells Manufacturing Process & Cost Tailoring Molecular Properties Desirable Properties Environment Impact Multiple Uses and Applications
Characterization of a Solar Cell 開路電壓 (open circuit voltage, Voc) 短路電流 (short circuit current, Jsc) 填充因子 (fill factor, FF) 光電轉換效率 (power conversion efficiency, PCE) Angew. Chem. Int. Ed., 2012, 51, 2020
Device structure Planar Heterojunction (PHJ) Bulk Heterojunction (BHJ) Angew. Chem. Int. Ed. 2012, 51, 2020 – 2067
Donor and Acceptor • Donor :PCBM • Acceptor:P3HT
Enhanced Electrical Conductivity in Regioselectively SynthesizedPoly(3-al kylthiophenes)R. D. McCullough, R. D. Lowe, M. Jayaraman and D. L. AndersonJ. Org. Chem., 1993, 58, 904 98 %HT P3HT(Mn=12 200 g mol-1, PDI~1.9), yield 36 %
The First Regioregular Head-to-Tail Poly( 3-hexylthiophene-2,5-diyl) and a RegiorandomIsopolymer: Ni vs Pd Catalysis of 2( 5)-Bromo-5( 2)- (bromozincio) -3-hexylthiophene PolymerizationTian-An Chen and Reuben D. Rieke*J. Am. Chem. SOC. 1992, 114, 10087-10088 98 %HT P3HT(Mn=37 680 g mol-1, PDI=1.48), yield 82 %
Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of RegioselectivityRobert S. Loewe, Paul C. Ewbank, Jinsong Liu, Lei Zhai, and Richard D. McCullough*Macromolecules 2001,34, 4324-4333 GRIM ~99 %HT P3HT(Mn=20 000- 35 000g mol-1, PDI=1.2-1.4), yield 71 %
Chain-Growth Polymerization forPoly(3-hexylthiophene) with a DefinedMolecular Weight and a Low Polydispersity Akihiro Yokoyama, Ryo Miyakoshi, and Tsutomu Yokozawa*Macromolecules 2004, 37, 1169-1171 >98 %HT P3HT(Mn=31 700 g mol-1, PDI=1.36), yield 78 %
Extremely regio-regular poly (3-alkylthiophene)s from simplified chaingrowth Grignard metathesis polymerisations and the modification of their chain-endsRoger C Hiorns,∗ Abdel Khoukh, Benoit Gourdet and Christine Dagron-LartigauPolymInt, 2006,55,608–620 100%HT P3HT(Mn=33 400 g mol-1, PDI=1.12), yield 37-48 %
Purification-Free and Protection-Free Synthesis of Regioregular Poly(3-hexylthiophene) and Poly(3-(6-hydroxyhexyl)thiophene) Using a Zincate Complex of t-Bu4ZnLi2TomoyaHigashihara,* EisukeGoto, and Mitsuru UedaACS Macro Lett., 2012, 1, 167 >90 % HT P3HT(Mn=25 000-307 000 g mol-1, PDI<1.2), yield 80-90%
Synthesis and characterisation of telechelicregioregular head-to-tail poly(3-alkylthiophenes)Ahmed Iraqi* and George W. BarkerJ. Mater. Chem., 1998, 8, 25–29 >96 % HT P3HT(Mn=10 000-16 000 g mol-1, PDI=1.2-1.4), yield 10-50 %
Tris[tri(2-thienyl)phosphine]palladium as the CatalystPrecursor for Thiophene-Based Suzuki-MiyauraCrosscoupling and PolycondensationWEIWEI LI, YANG HAN,1BINSONG LI, CAIMING LIU, ZHISHAN BO*J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4556 97 % HT P3HT(Mn=26 000 g mol-1, PDI=2.3), yield 72 %
Palladium-Catalyzed DehydrohalogenativePolycondensation of 2-Bromo-3-hexylthiophene: An Efficient Approach to Head-to-TailPoly(3-hexylthiophene)Qifeng Wang, Ryo Takita, YuutaKikuzaki, and Fumiyuki Ozawa*J. Am. Chem. Soc., 2010, 132, 11420-11421 Herrmann’s catalyst 98 % HT P3HT(Mn=30 600 g mol-1, PDI=1.6), yield 99%
Head-to-Tail Regioregularity of Poly(3- hexylthiophene) in Oxidative Coupling Polymerization with FeCl3S. Amou, O. Haba, K. Shirato, T. Hayakawa, M. Ueda*, K. Takeuchi and M. Asai, J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 1943. 89 % HT P3HT(Mn=38 000 g mol-1, PDI=2), yield 62% Long time(200 h) 88 % HT P3HT(Mn=68 000 g mol-1, PDI=1.9), yield 100%
Synthesis Of Poly(3 hexylthiophene) by Using the VO(acac)2-FeCl3-O2 Catalyst System S. Yu, T. Hayakawa and M. Ueda, Chem. Lett., 1999, 559-560.
Effect of the regioregularity of poly(3-hexylthiophene) on the performances of organic photovoltaic devices 77 %HT P3HT(Mn=20400 g mol-1, PDI=2.8) 97 %HT P3HT(Mn=20600 g mol-1, PDI=1.2)
Influence of the Molecular Weight of Poly(3-hexylthiophene) on the Performance of Bulk Heterojunction Solar CellsPavelSchilinsky,,§ UdomAsawapirom, UllrichScherf, Markus Biele, and Christoph J. Brabec Chem. Mater. 2005,17, 2175-2180
Regioregularity of P3HT is known to be one of the keyparameters affecting the related solar cells performance, andcritically depend on the regioselectivity of the syntheticapproaches to conducting P3HT. • Intensive studies have also revealed that the regioregularpolymerization of P3HT proceeds via a chain-growth mechanismand may also exhibit living characteristics. • This feature allows for the precise control of the polymer molecular weight and polydispersity, which were found to be, in turn, critical parameters modulating polymer electronic, optical, electrochemical properties, and solid-state packing, therefore influencing the OPV device performance