1 / 30

Tuesday Clinical Case Conference

Tuesday Clinical Case Conference. 4/08 Zae Kim, MD. Bartter-like salt losing tubulopathies History. In 1962, Frederic Bartter Reported two patients with Hypokalemic alkalosis normal blood pressure despite high aldosterone production Growth and mental retardation

cartwrightc
Download Presentation

Tuesday Clinical Case Conference

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tuesday Clinical Case Conference 4/08 Zae Kim, MD

  2. Bartter-like salt losing tubulopathiesHistory • In 1962, Frederic Bartter • Reported two patients with • Hypokalemic alkalosis • normal blood pressure despite high aldosterone production • Growth and mental retardation • Muscle weakness and cramps • Salt craving and constipation • Polydipsia and polyuria • Lab: • K 2-2.2 meq/L, HCO3 30-34 mmol/L, sCl 75-66 meq/L • Endocrinologist’s approach = adrenalectomy • Hyperplasia of the zona glomerulos • Renal bx: hyperplasia of the juxtaglomerular apparatus

  3. Bartter-like salt losing tubulopathiesHistory • Works of McCredie, Fanconi, Dillion • Two quite distinct clinical presentations of BS identified within the group of pediatric Bartter patient • Neonatal variant of BS • The most severe form • Polyhydramnios, premature delivery • Growth retardation • marked hypercalciuria leading to nephrocalcinosis • Classical Bartter syndrome • Insidious onset in infancy • Present with failure to thrive • Nephrocalcinosis is typically absent (hypercalciuria to lesser extent)

  4. Bartter-like salt losing tubulopathiesHistory • Gitelman syndrome • Reported in 1966 • “a new familial disorder characterized by hypokalemia and hypomagnesemia” in two adult sisters • Clinically: • Often present in early adulthood • Predominantly musculoskeletal symptom • Carpopedal spasm and normal growth • Biochemical • Hypokalemia, but less marked than BS • Hypomagnesemia is constant finding • Pronounced hypocalciuria, where as BS have nl-to-high • BS with polyuria, 2/2 reduction of urinary concentrating ability, not present in Gitelman patients

  5. Bartter-like salt losing tubulopathiesHistory • Contribution by geneticists • 1996 • Simon et al • Gitelman disease = mutation of gene on Chr 16 = NaCl • neonatal variant of BS (BS I) = mutations of gene on on Chr 15 = NaK2Cl cotransporter • Lifton • BS II = ROMK channel • 1997 • Lifton • BS III = mutation of gene on chr 1 = ClCNkb • 2001 • Landau • BSND = mutation of gene on ch 1 = “Barttin” • Knock-out animal model exist for Gitelman and Bartter type I and II • Genetic testing – hampered by… • Large gene dimensions, lack of hot-spot mutations, heavy workup time, and costs

  6. Clinical and biochemical features of Gitelman's syndrome and the various types of Bartter's syndrome Phillips DR et al. (2006) A serum potassium level above 10 mmol/l in a patient predisposed to hypokalemia Nat Clin Pract Neprol2:340–346 doi:10.1038/ncpneph201

  7. Pathyphysiology

  8. Pathophysiology Hypokalemic salt-losing tubulopathies_Zelikovic_Nephrology Dialysis Transplant_2003

  9. BSND – a model of K+ secretion in the inner ear Bartter syndrome_Herbert_CurrOpinHTNNeph_2003

  10. Hypokalemic salt-losing tubulopathies_Zelikovic_Nephrology Dialysis Transplant_2003

  11. Cascade of events Salt loss Volume depletion Renin/aldosterone secretion / JGA hyperplasia autonomous hyperreninemic hyperaldosteronism Enhanced K and H secertion at the collecting tubule Hypokalemia and metabolic alkalosis result

  12. Diagnosis • Clinical history and biochemical workup may not allow definite diagnosis • Especially concerning the different types of tubular disorders • Genetic diagnosis • Costly, cumbersome, and time-consuming because • Great dimension of most genes • Five exonic regions for ROMK to 26 exons for SLC12A1 and SLC12A3 • Lack of hot-spot mutations • Recognized mutations evenly distributed along the whole gene • And very large number of mutations • Test with diuretic?

  13. A Thiazide Test for the Diagnosis of Renal Tubular Hypokalemic DisordersColussi, et. Al, CJASN, 2007 • In cohort of patients with genetically proven GS or BS diagnosis, sensitivity and specificity of diuretic test with oral HCTZ was evaluated • GS, n=41 • 19 pediatric and 22 adult patients • BS, n=7 • five type I, two type III • “pseudo-BS”, n=3 • two from surreptitious diuretic intake and one from vomiting • TEST: administration of HCTZ and measurement of the maximal diuretic-induced increase over basal in the subsequent 3h of chloride fractional clearance

  14. Blood and urine biochemical data in patient groups

  15. Group results of HCT test

  16. Individual hydrochlorothiazide test results(as maximal increase in fractional chloride clearance)

  17. Traditional parameters • Age, plasma Mg and urine Ca excretion lack specificity • Blunted natriuretic and chloruretic response to HCT correctly recognizes GS from BS and from PB • Small number of BS and PB in the study

  18. Treatment • Antenatal BS / Classic • Replacement therapy • Fluid loss may surpass 50cc/kg/d with very large loss of Na (~45meq/kg/day) • K supplement • Rx • Prostaglandin synthetase inhibitors (indomethacin) • Gitelman • Mg / K supplement • Spironolactone or amiloride

  19. Pathophysiology

  20. Gitelman syndrome • Reported by Gitelman few years after Bartter • Similar syndrome characterized by • Hyperreninemia, metabolic alkalosis, and impaired renal conservation of Mg and K • In contrast • Often diagnosed in adolescence or early adulthood • Asymptomatic finding on routine lab test • Predominant muscular symptoms • Mutation • Inherited as autosomal recessive • Inactivating mutations in the SLC12A3 gene • Loss of function of NCCT in DCT • chr 16q13

  21. Age at manifestation and primary symptoms of genetically defined salt-wasting kidney disorders Mechanism of disease the kidney-specific chloride channesl_Kramer_NatureClinicPractNeph_2007

  22. Bartter Syndrome – clinical manifestation • typically manifests early in life with • polyhydramnios, failure to thrive, growth retardation, polydipsia, dehydration, salt craving, and marked muscle weakness. • Blood pressure is characteristically low or normal. • The GFR is normal, but there is inadequate urinary acid excretion after NH4Cl challenge. • Nephrogenic diabetes insipidus also may be seen. • Sodium transport in erythrocytes and salivary glands is impaired • As early as 1975 Kurtzman and Gutierrez (281) postulated that Bartter syndrome resembled one of inhibited function of the thick ascending limb • most recent genetic studies seem to confirm this proposal. • Renal biopsy demonstrates hyperplasia and hypertrophy of the juxtaglomerular cells as well as of the medullary interstitial cells, the site of prostaglandin E2 synthesis.

  23. 3 or 4 types of Bartter’s have been identified: • Defects in the luminal Na-K-Cl transporter • Defects in the luminal potassium channel • Defects in the basolateral chloride channel

  24. Gitelman’s syndrome • Like Bartter’s an autosomal recessive disorder, but not usually diagnosed early in life. • Findings mimic administration of a thiazide diuretic: the defect is in the Na-Cl transporter. • Patients may complain of polyuria, cramps. • They do not have hypercalciuria, but typically have low serum magnesium levels.

More Related