1 / 77

New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011

Observation of charged bottomonium -like states -and a few other items-. Stephen Lars Olsen Seoul National University. New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011. Constituent Quark Model. Λ = (uds). Mesons are quark-antiquark pairs.

carver
Download Presentation

New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Observation of charged bottomonium-like states -and a few other items- Stephen Lars Olsen Seoul National University New Frontiers in QCD (QCD-2011) Yonsei University, Seoul Korea, October 27 ~ 28, 2011

  2. Constituent Quark Model Λ= (uds) Mesons are quark-antiquark pairs Baryons are quark-quark-quark thriplets Fabulously successful Quarks are probably the most well known particle physics quantity among the general public 2

  3. Are there other color-singlet spectroscopies? Pentaquark: H-diBaryon Glueball Tetraquarkmesons qq-gluon hybrid mesons Other possible “white” combinations of quarks & gluons: u d u d s _ u tightly bound 6-quark state d s S=+1 Baryon u s d Color-singlet multi- gluon bound state D0 _ c _ u loosely bound meson-antimeson “molecule” c tightly bound diquark-diantiquark u _ p _ u c _ _ u _ D*0 c _ _ c c

  4. predicted measured Strategy: Search for a meson that decays to a final state containing a c and c quark, If it is a standard qq meson, it has to occupy one of the unfilled states indicated above. If not, it is exotic. unassigned _ _

  5. cc production at B factories

  6. “XYZ” mesons Zb(10610) 10608 ± 2 15 ± 3 1+p±hb(1,2P),p±Y(1,2,3S) Y5Sp Zb(10610)± Zb(10610) 10653 ± 2 14 ± 3 1+p±hb(1,2P),p±Y(1,2,3S) Y5Sp Zb(10650)±

  7. The X(3872) Study p+p-J/y produced in BK p+p- J/y decays Polarized along flight direction in B rest frame ???? EB=Ecm/2

  8. The X(3872) in BK p+p-J/y discovered by Belle (140/fb) PRL 91, 262001 (2003) y’p+p-J/y X(3872)p+p-J/y M(ppJ/y) – M(J/y)

  9. X(3872)p+p-J/y with all Belle data 3-dimensional fits M(J/ψπ+π-) EB-Ecm/2 MB B+XK+ B0XK0

  10. diquark-diantiquark? diquark-diantiquark (tetra-quark) model Maianieal PRD71, 014028 Expect two neutral states: Predict : DM(Mx(B+)-Mx(B0)) =8±3 MeV Plus charged partners: X+= Xu= X-= Xd= Isospin relations: u d u d c c c c d u u d c c c c

  11. Two neutral states? B+XK+ B0XK0 Maianieal PRD71, 014028 Predict : DM(Mx(B+)-Mx(B0)) =8±3 MeV

  12. charged partners of the X(3872) ? X+(3872)p+p0J/y : Isospintriplet? 2-dim. Fit B0X+K- Nevts =4.2±7.8 B(B0K-X+)xB(X+p+p0J/y)<3.9 x10-6 Rule out isospin triplet model B+X+K0 No signals B(B+K0X+)xB(X+p+p0J/y)<4.5x10-6 not 2x larger!!

  13. X(3872)p+p-J/y Mass recent results LHCb Belle CDF ~6000 evts! MX = 3871.61 ± 0.16 ± 0.19 MeV MX = 3871.96 ± 0.46 ± 0.10 MeV MX = 3871.85 ± 0.27 ± 0.19 MeV

  14. X(3872) mass(in p+p-J/ychannel only) • =3871.79 ± 0.30 MeV _ MX(3872) –(MD0+MD*0)= -0.12 ± 0.35 MeV

  15. D0D*0 molecule? __ _ D0-D*0 “Binding Energy” small Dm = -0.12 ± 0.35 MeV …coincidence?? an “old” idea

  16. De Rujula, Glashow & Georgi (1976) PRL 38, 317 (1976) _ predictions: DD* JPC=1++ _ (DD*)molrJ/y p+p- Also: L. Okun& M. Voloshin JETP Lett. 23, 333 (1974)

  17. p+p-system in X(3872)p+p-J/ycomes from rp+p- Belle: hep-ex/0505038 CDF: PRL 96 102002 rp+p- lineshape M(p+p- ) p+ r p- X3872 J/y M(p+p- )

  18. CDF results on JPC 1++ fits well with no adjustable parameters 2-+ looks like 1++ for some choice of params, at least with current statistics All JPC values other than 1++ or 2-+are ruled out with high confidence CDF: PRL 98 132002 1++ no adj. params 2- +2 adj. params 1- - O++

  19. JPC of the X(3872) Angular distributions for BKX(3872)KrJ/y Partial Wave basis: 775 MeV X(3872)r J/y is right at threshold  neglect higher partial waves 3872 MeV 3097 MeV 1++ 2-+ L: S-Wave D-wave S: 1 1,2 L: P-Wave F-wave S: 1,2 1,2 Only 1 amplitude: BLS=B01  1 free parameter: 2 amplitudes: BLS=B11& B12  3 free parameters normalization normalization complex Include relative phase f

  20. JPC of the X(3872) m+ J. Rosner PRD 70, 092023 (2004) qm p+ K c p+ m- c2/dof =1.56/4 c2/dof =4.60/4 1++ fits data well with no free parameters. 2-+ has a free complex parameter; one value gives an acceptable fit c2/dof =0.56/4 c2/dof =5.24/4

  21. _ 1++ cc assignment? cc1 ‘ pinnedto: Mcc2=3930 MeV ‘ • Mass is too low? • 3872 vs 3905 MeV • nr=2 splitting> nr=1 • G(cc1 gy’) ~180 keV • G(cc1 g J/y) ~14 keV • G(cc1 gy’)/G(cc1 g J/y)>>1 • expt’l upper limit: <2.1 ‘ ‘ T.Barneset al PRD 72, 054026 • Gp+p-J/y=(3.4±1.2)GgJ/y ~45 keV huge for Isospin-violating decay c.f.: G(y’p0J/y)≈0.4 keV

  22. X(3872) gy’ ?? Belle 2010: y’ l+l- y’J/yp+p- B+ B+ no signals!! M(gy’) M(gy’) B0 B0 B(B+K+ X3872)xB(X3872gy’) B(B+K+ X3872)xB(X3872gJ/y) < 2.1 (90%)

  23. _ 2-+ cc assignment? hc2 pinned to: My”=3770 MeV • Mass is too high?: • 3872 vs 3837 MeV • G(hc2 gy’) ~0.4 keV • G(hc2 g J/y) ~9 keV • G(hc2 gy’)/G(hc2 g J/y)<<1 Y. Jiaet al arXiv:0107.4541 • Gp+p- J/y=(3.4±1.2)GgJ/y ~30 keV • huge for Isospin-violating decay • c.f.: G(y’p0J/y)≈0.4 keV • BKhc2 violates factorization • BKhc not seen • BKcc2 barely seen _ • hc2  DD* expected to be tiny • Belle & BaBar:: • G(XDD*)/G(Xp+p-J/y)=9.5±3.1 Y. Kalasnikovaet al arXiv:1008.2895 hc2ghc(1S) & pphcmodes expected to dominate _

  24. Belle (May 2010): B+  K+ g J/y calibration reaction 3.6s B+K+cc2: 1st evidence cc1gJ/y M(gJ/y) M(gJ/y) Bf(B+K+cc1)=(49±3)x10-5 Bf(B+K+cc2)=(1.11±0.37)x10-5 B(B+K+cc2) B(B+K+cc1) = 0.022 ±0.007 factorization suppression penalty Belle: arXiv 1105.0177

  25. Narrow width: G<1.2 MeV G= ~ 0.0  best fit below experimental resolution at G = 0.95MeV 90 % inflate by +0.23 MeV for possible biases G<1.2 MeV @ 90% CL Belle prev: G<2.3 MeV

  26. B0→X(3872)K+p- (B→X(3872) K*?) 605 /fb Belle arXiv:0809.1224(2008) 5σ sideband bkgd non-resonant Kπ X(3872)→J/ψπ+π– K*0→Kπ Nsig= 9019 (Nsig=8.2 10.0) Mass(Kπ) No K*Kp signal!! +1.1 - 1.4 B(B0→X(K+π–)non_res) x B(X→J/ψπ+π–) = (8.1±2.0 )x10–6  dominant ! B(B0→XK*0) x B(X→J/ψπ+π–) < 3.4x10–6 @90% CL  small !!

  27. BKX(3872) is very different from other BKCharmonium KX(3872) all K* comes from sideband Belle arXiv:0809.0124 M(K) / GeV Kc1 K′ KJ/ BaBar, Phys. Rev. D71(2005)032005 Belle, Phys. Lett. B634(2006)155 Belle arXiv:0809.0124 M(K) M(K) M(K) K* dominates

  28. X(3872)D0D*0 is observed B KD0D*0 D*0→D0γ 605 fb-1 2-dim. Fits + 0.4 − 0.5 + 0.6 − 0.4 M = 3872.9 MeV D*0→D0π0 Agrees with M from ppJ/y mode + 2.8 − 1.4 + 0.2 − 1.1 G(BW) = 3.9 MeV _ Bf(BK X3872)xBf(X3872D*0D0) = (0.80±0.20± 0.10)x10-4 = (9.5±3.1)x Bf(p+p-J/y) PRD81, 031103(2010) See also: BaBarPRD77, 011102(2008) & Belle PRL97, 162002(2006)

  29. Molecular Picture If the X couples to D0 D*0 in an S-wave: ~ 10 fermis!! E. Braaten, J. Stapleton PRD81, 0140189

  30. X(3872)-J/y relative sizes drms(208Pb nucleus)≈5.5 fm + + drms(J/y) ≈ 0.4 fm + + + 208Pb + + + J/y + + + + + drms(X3872) ~ 5 fm + + + + + + X(3872) Volume(J/y) Volume(X3872) ≈ 10-3 _ • Overlap of the cc necessary to form the J/y in X p+p-J/y decays is rare • How can such a fragile object be produced in H.E. pp collisions? heavy ion collisions?? _ -- arXiv 0906.0882: sCDF(meas)>3.1±0.7nb vsstheory(molecule)<0.11nb C. Bignaminiet al, PRL 103, 162001:

  31. X(3872) as a probe for Heavy Ion physics? _ • Size is huge (but it is produced in pp collisions) • 4 valance quarks  unique probe for quark number scaling

  32. JPC = 1- - Y(4260) meson Zb(10610) 10608 ± 2 15 ± 3 1+p±hb(1,2P),p±Y(1,2,3S) Y5Sp Zb(10610)± Zb(10610) 10653 ± 2 14 ± 3 1+p±hb(1,2P),p±Y(1,2,3S) Y5Sp Zb(10650)±

  33. Radiative return B-factory energies g ss cc bb 3~5 GeV 10.58 GeV Ecm(GeV)

  34. 233 fb-1 e+e- gisr Y(4260) at BaBar p+p- J/y BaBar PRL95, 142001 (2005) fitted values: M=4259  8 +2 MeV G = 88  23 +6 MeV -6 -9 Y(4260) ~50pb

  35. Y(4260) confirmed by Belle BaBar values: M=4247  12 +17 MeV G = 108  19 ±10 MeV -32 M=4259  8 +2 MeV G = 88  23 +6 MeV -6 -9 C.Z Yuan et al (Belle) PRL 99, 182004

  36. Not seen in e+e- hadrons J.Z.Bai et al (BES), PRL 88, 101802 (2006) s(e+e- hadrons) s(e+e-  m+m-) _ No sign of Y(4260)D(*)D(*) 4260 speak(Y(4260)+p-J/)~50 pb Huge by charmonium standards ~3nb BES data G(Y4260p+p- J/y) > 1.0 MeV@ 90% CL X.H. Mo et al, PL B640, 182 (2006)

  37. DD DDπ D*D* DD* DD*π DsDs +DsDs* +Ds*Ds* ΛcΛc Exclusive cross sections contribution to the total cross section Contributions ofD+D*–,D*+D*–, D0D–π+ and D0D*–π+ are scaled following isospin symmetry

  38. peaks in e+e- gISR p+p-y’ e+e-gISRp+p-y’ BaBar M=4324  24 MeV G = 172  33 MeV M(p+p-y’) Peak is 4324 MeV, distinct from 4260 MeV

  39. 4325 MeV p+p-y’ peak also seen Two peaks! (both relatively narrow) (& neither consistent with 4260 MeV) X.L. Wang et al (Belle) PRL 99, 142002 (2007) M=4361  9 ±9 MeV G = 74  15 ±10 MeV M=4664  11 ±5 MeV G = 48  15 ±3 MeV 4260 BaBar values M=4324  24 MeV G = 172  33 MeV 548 fb-1

  40. At least three peaks for only one unassigned 1- - level 4664MeV 33D1 4361MeV 4260MeV _ If these are mesons, they must be more complex than simply cc

  41. Zb mesons Zb(10610) 10608 ± 2 15 ± 3 1+p±hb(1,2P),p±Y(1,2,3S) Y5Sp Zb(10610)± Zb(10610) 10653 ± 2 14 ± 3 1+p±hb(1,2P),p±Y(1,2,3S) Y5Sp Zb(10650)±

  42. XYZ counterparts with b-quarks? What about here? W.S. Hou PRD 74, 017504 (2006)

  43. _ “bottomonium” bb mesons 2MB = 10358.7 MeV (4S) p+p-  (1S) ?

  44. Belle: G(4S)p+p-(1S) (4S)  (1S) p+p- 2S 3S 4S 477 fb-1 52±10 evts

  45. (5S) p+p-  (1S) ? 2MB = 10358.7 MeV

  46. Belle:G(5S)p+p-(1S) ~1/20th the data ~1/5ththe cross-section 23.6 fb-1 vs477 fb-1 325±20 evts! >6 times as many events! K.F. Chen et al (Belle) PRL 100, 112001 (2008)

  47. “(5S)” is very different from other  states Anomalous production of (nS)+- (MeV) Belle PRL100,112001(2008) X10--2 Recall Y(4260) with anomalous (J/+-) Is there a Yb equivalent close to (5S)

  48. Comparison of s(e+e-p+p-) vss(e+e- hadrons) (5S)p+p- (5S)hadrons ~2s discrepancies in the peak mass and width 5S: Belle PRD82,091106R(2010) Nature of (5S) is puzzling and not yet understood

  49. Look at p+p-recoil mass in (5S)+-+ X 121.4 fb-1 hb(1P) X=(1S) (2S) hb(2P) (3S) MM(+-) spectrum hb(1,2P)JPC=1+- 1st observations MM(+-) residuals

  50. MM(0) hb(1,2P) _ (bb) : S=0 L=1 JPC=1+- Expected mass  (Mb0 + 3 Mb1 + 5 Mb2) / 9 MHF test of hyperfine interaction Deviations from CoG of bJmasses hb(1P)(1.6  1.5) MeV/c2 hb(2P)(0.5 +1.6 ) MeV/c2 -1.2 Agrees with expectations Previous search BaBar 3.0 (3S) → 0 hb(1P) arXiv:1102.4565

More Related