E N D
1. Random Convolution in Compressive Sampling Michael Fleyer
2. Standard Sampling Nyquist/Shannon sampling:
3. Compressive Sampling
4. Compressive Sampling (cont.)
5. CS example (Compressive Sensing Richard Baraniuk Rice University, Lecture Notes in IEEE Signal Processing MagazineVolume 24, July 2007)
6. Sparsity
7. Sparsity (cont.)
8. Incoherence
9. Incoherence (cont.)
10. CS-required properties
11. Sparse signal recovery
12. Reconstruction conditions
13. Linear Programming
14. Example
15. Robust CS
16. RIP and CS
17. General signal recovery
18. Recovery from noisy signals
19. Random sensing
20. Random sensing (cont.)
21. CS main results
22. CS by random convolutionCompressive Sensing By Random ConvolutionJustin Romberg, submitted to SIAM Journal on Imaging Science
23. CS by random convolution (cont.)
24. CS by random convolution (cont.)
25. Subsampling
26. Applications
27. Applications (cont.)
28. Applications (cont.)
29. Coherence bounds
30. Cumulative coherence
31. Main Results
32. Example