1 / 35

Remember DOS- Disk Operating System?

Remember DOS- Disk Operating System?. The pointed hair boss remains clueless. What would you rather have? A computer or an X-Box 360. $398 Laptop computer AMD Sempron Processor 60 GB nard drive DVD/CD Burner Basic programs. $399.92 X-Box 360 One controller NO games.

casey
Download Presentation

Remember DOS- Disk Operating System?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Remember DOS- Disk Operating System?

  2. The pointed hair boss remains clueless

  3. What would you rather have?A computer or an X-Box 360 $398 Laptop computer AMD Sempron Processor 60 GB nard drive DVD/CD Burner Basic programs $399.92 X-Box 360 One controller NO games Wal-Mart Ad

  4. The Volt by GM will be an all electric car. Other manufacturers are also introducing all electric cars With more cars becoming hybrid electric and total electric powered, the demand for Electrical and Computer engineers will increase in the auto industry.

  5. This was a good idea but was scrapped because the solar powered lights would not provide enough illumination. It will be revisited as solar cells and LEDS become more efficient and brighter

  6. Opto-electronics (devices that use light) include LEDs or light emitting diodes, solar cells, and fiber optic components

  7. UNC-Charlotte College of Engineering Buildings Bioinformatics Grigg Physics Optoelectronics Duke Centennial ME PE Motor sports EPIC ECE and Civil Engineering New football stadium Cameron ECE Clean Room Smith ET MAPS

  8. Engr 1202 E01 students will need to choose one of two projects Details on each project will be presented to help choose • The EE project will require working in the Cameron microelectronics clean room • The computer engineering project will be done in EPIC

  9. The Engr 1202 EE Project • Teams will be formed of 4 to 6 members. Each team will decide on various options to design and fabricate a prototype. • The EE project will require a one hour time commitment other than the TR 8:OOam slot. • A silicon wafer will be used to fabricate the prototype miniature communications antenna • The design will be evaluated on cost, reliability, and manufacturability. • Each team will submit slide presentation of their design.

  10. The Engr 1202 EE Project Research, design, and fabricate a miniature planar antenna for use in: • Mobile phone using the PCS frequency of 1850-1990 MHz • “Bluetooth” and Wi-Fi antenna using the frequency band of 2400-2597 MHz • RFID antenna using the frequency band of 860-960 MHz • GPS antenna using the frequencies of 1227.60 MHz and 1575.42 MHz Maximum size of 20mm x 20mm, minimum size of 5mm x 5mm. Width on antenna not less than 1mm. Design to have no sharp corners. Reliability, cost, and manufacturability to also be considered

  11. The Computer Engineering Project • Students will form small teams • A programmable robot will be fabricated • The robot will need to perform a specific set of commands for maximum grade • Work will be done in EPIC • A final report will be required • Dr. Conrad will provide additional details

  12. Communications – the key to technology progress • Data, voice, and video are all key elements • Both electrical and computer engineers will play a key and vital role • “Wireless” communications is the dominate form • The EE project will focus on communications systems and a key element of these system.

  13. Next few slides are from the book:

  14. Antennas How Wireless Works by Preston Gralla

  15. Early Cell Phone

  16. The Inside of a mobile flip phone Battery Chip set for transmit and receive Keypad Ribbon wire to connect top and bottom Camera Display on back side of circuit board

  17. Cell phone showing internal antenna Antenna

  18. Wrist mobile phone is a reality

  19. Recent announcement at CESWatch to cell phone connectivity

  20. Example of a miniature antenna for a mobile phone/watch

  21. From Engr 1201 we will use:

  22. Engr 1202 EE project and the clean room • To work in the clean room, students must wear clean room garments • To work in the clean room, students must pass the required safety test • Students need to be aware of the hazards in the clean room at all times

  23. Clean Room?

  24. Cameron HallOn Craver Road, across from parking lot 16Microelectronics Clean Room on second floor, room 201

  25. Required gowning when working in the ECE Microelectronics Clean Room • Special material garments • Hood • Coveralls • Boots • Face mask • Goggles when working with chemicals • Gloves

  26. Students Working in the ECE Microelectronics Clean Room

  27. Requirements to work in the ECE Microelectronics Clean Room • Gown in clean room garments at all times • Understand clean room protocols and procedures • Understand the hazards and dangers when working in the clean room • Take and pass a clean room safety test

  28. Units used in electrical and computer engineering • Units • Tera - 1012 • Giga – 109 • Mega – 106 • Kilo – 103 • Milli – 10-3 • Micro – 10-6 • Nano – 10-9 • Pico – 10-12

  29. Understanding the SI system is essential in engineering • Power – kilovolts, megawatts • Circuits – microamps, picofarads, millivolts • Communications – megahertz, gigahertz • Computer speed – nanoseconds • Time dependence – microseconds, milliseconds

  30. How much does it cost to run a 100 watt light bulb • Typical cost from Duke Power is $.08/Kw-Hr • Convert 100w to Kw (Kw = 103W) • 100W=.1 KW • For 1 hour a 100w light bulb uses .1 KW-Hr • For 24 hours, a 100W light bulb uses (24 hr) x (.1 KW-hr) = 2.4 Kw-Hr/day • Cost for 24 hr is ($.08/Kw-hr) x (2.4 Kw-hr/day) =$.192/day • Cost for a month is (30 days) x ($.192/day) = $5.76/month • Cost for a year is (365 days) x ($.192/day) = $70.08/year

  31. Compare cost to a high efficiency replacement lamp • If an equivalent high efficiency lamp uses 13 watts instead of 100 watts • 13 watts = .013 Kw • (.013 KW-Hr) x (24Hr/day) = .312 KW-Hr/day • ( $.08/Kw-Hr) x (.312 KW-Hr/day) = $.02496/day • ($.02496/day) x (365 days/yr) = $9.11/yr • 100watt light bulb = $70.08/yr • 13 watt light bulb = $9.11/yr • Based on lamp running 24 hours per day, everyday for a year

  32. This analysis can be used for any electrical deviceEvery electrical device will show power required to operate it • Typical computer may use 120V, 1.5A • (120V)(1.5) = 180 watts = .180 Kw • (.180 Kw-hr) x ($.08/Kw-Hr) = $.0144/Hr • ($.0144/hr) x (24 hr/day) = $.3456/day • ($.3456/day) x (365 days/yr) = $126.144/yr

  33. Assignment – due next class • Review the presentation slides on the project, antennas and units • Complete HW 2 – units work sheet found on the Engr 1202 ECE web site • Answers need to be in scientific notation – one unit to the left of the decimal point Homework and lecture slides can be found at http://coefs.uncc.edu/jahudak/ under heading Engr 1202,

More Related