1 / 30

Lecture 9.1

Lecture 9.1. Building a FET. Integrated Circuits. CPU or Memory First Layer Transistors Capacitors Diode Resistors Multi-layer Wiring Interconnects Bonding Pads Dielectric Capacitors Heterostructures. MOSFET in Memory Chip. Source Gate Drain. Field Effect Transistor (FET).

cate
Download Presentation

Lecture 9.1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 9.1 Building a FET

  2. Integrated Circuits • CPU or Memory • First Layer • Transistors • Capacitors • Diode • Resistors • Multi-layer • Wiring • Interconnects • Bonding Pads • Dielectric • Capacitors • Heterostructures

  3. MOSFET in Memory Chip Source Gate Drain

  4. Field Effect Transistor (FET)

  5. Voltage Controlled Resistor

  6. Make Mask for Doping • Clean wafer surface • Oxidize Si Surface • How Thick is needed for Doping Mask? • Spin on photoresist • Image photoresist • Develop photoresist • Dissolve un-crosslinked photoresist • Etch exposed SiO2 down to the Si of the wafer • Doping • Remove Implantation Mask

  7. Silicon Oxidation • Reactor • Furnace at T=850C • Pure Oxygen • Si + O2 SiO2 • Kinetics • BL-Mass Transfer • J=Kg(CA-0) • SS-Diffusion • J=DO-SiO2 (dC/dx) • Heat Transfer • BL, q=h(T1-T) • Solid, q=kSiO2(dT/dx) • J=q/Hrxn Grxn<0, Spontaneous

  8. Kinetics • Thickness • Linear Rate • Reaction Control • First Order • BL-MT Control • BL-HT Control • Parabolic Rate • Product diffusion Control • Product heat transfer Control • J =(dx/dt) SiO2/MW SiO2

  9. Thickness Experiments • Parabolic Rate • Derive it! • dx2/dt=2K • K=Ko exp(-Ea/RgT) • x=o @ t=0 • x=  at t=  • Very common!! • Slow Solid State Diffusion • Slow Heat Conduction

  10. Mask Thickness • To effectively prevent ions penetrating in thick zone • Relatively thick Oxide Protection layer • Patterned • Thinning (etching) of Oxide Protection layer over implantation zone • Remove oxide layer with impurities inside

  11. Mask Thickness • Transmission through mask • T=1/2 erfc[(x-xave)/2 x] • To stop 99.99% of implanted materials, T=10-4 • Solve for x, the thickness to stop 99.99% of ions.

  12. SiO2 Mask Thickness

  13. Si3N4 Mask Thickness

  14. Photoresist Mask Thickness

  15. Implantation • Create Ions in Vacuum • Accelerate in Electric Field • Impinge onto Silicon Surface • Knock out Si ion(s) • Charge Balance • Travel deep into Silicon

  16. Implantation • Effect of Ion Mass

  17. Implant Depth Depth Increases with Energy

  18. Implantation Straggle Increases with Energy

  19. Implantation Concentration Profile • Probability Based • N(x)=Nmax exp[(x-xave)2/2x2] • Nmax=(Ndose/[(2) x])~(0.4 Ndose/ x) • Ndose=Qdose/e • Qdose= current applied/cm2 • σx = projected straggle

  20. Remove Implantation Mask • Chemical Mechanical Polishing • Remove all Oxide from wafer surface • Dry Etching

  21. Drive Dopant Impurities into Wafer • Heat Treating • Laser Annealing • Diffusion • Heat and Hold for period of time • Solid State Diffusion • dC/dt=D d2C/dx2 • C=Co at x=0 • C=0 at x=

  22. Concentration Profile time

  23. Diffusion of Implanted Dopants • Diffusion Furnace or Laser • Heat Treatment • Solid State Diffusion • dCA/dt = CT d/dz(DAB dXA /dz) • C=Co(z) = CT XA(z) at z=0 • C=0 at z= • DAB =(D*A XB + D*B XA) (d ln [aA]/d ln [XA]) • Interdiffusion or mutual diffusion coefficient

  24. Gate Oxide • Capacitor connecting Gate to center of npn or pnp heterojunction • Capacitance • Area • Thickness • Dielectric constant of oxide

  25. Field Effect Transistor (FET)

  26. Gate Oxide Capacitance C=oA/d =C/Co =1+e e = electric susceptibility

  27. Field Effect Transistor (FET)

  28. Thickness Experiments • Parabolic Rate • Derive it! • dx2/dt=2K • K=Ko exp(-Ea/RgT) • x=o @ t=0 • x=  at t=  • Very common!! • Slow Solid State Diffusion • Slow Heat Conduction

  29. Metalization • Transistor Contacts • Base • Emitter • Gate • Planarize/Polish layer to get Flat Surface for next lithography Step • Metal Deposition

More Related