1 / 20

D 0 K + mass spectra for:

D 0 K + mass spectra for:. B +  D 0 D 0 K + B 0  D - D 0 K + B 0  D* - D 0 K +. for  25 0fb -1 (exp7-3 7 ). Outline : B +  D 0 D 0 K + B 0  D - D 0 K + B 0  D* - D 0 K + for  250fb -1 Dalitz plots and projections B ackground subtracted M(D 0 K + ) distributions

catori
Download Presentation

D 0 K + mass spectra for:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. D0K+mass spectra for: • B+ D0D0K+ • B0 D-D0K+ • B0 D*-D0K+ for 250fb-1 (exp7-37) • Outline : • B+ D0D0K+B0 D-D0K+B0 D*-D0K+ for 250fb-1 • Dalitz plots and projections • Background subtracted M(D0K+) distributions • DsJ(2573) & DsJ(2720) • Angular distrbutions Jolanta Brodzicka, Henryk Palka INP Krakow ICPV meeteing August 5, 2004

  2. B+ D0D0K+ for Mbc >5.273 GeV N/7.5MeV E for E<18MeV N/2.5MeV Mbc LR > 0.04 Fitting method: 2-dimMbc vs.E unbinned likelihood fit: L_Sig(Mbc, E) = S•( G (Mbc) • G (E) ) + S•( G (Mbc) • G (E) ) + S2•( G (Mbc) • G (E) )2 L_Bckg (Mbc, E) = B•ARG (Mbc) • POL_2 (E) L= L_Sig + L_Bckg S, S2: regions with missing ,2 Fit result: S/B=0.55 S = 145.2±17.3 G0(E) = -0.27E-02± 0.07E-02 GeV  (E) = 0.50E-02± 0.06E-02 GeV G0(Mbc) = 5.2814± 0.0003 GeV  (Mbc) = 0.24E-02 ± 0.02E-02 GeV Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  3. for Mbc >5.273 GeV N/7.5MeV E for E<18MeV N/2.5MeV Mbc B0 D-D0K+ LR > 0.01 Fit result (for fully reconstructed region): S/B=0.46 S = 191.3±19.2 G0(E) = -0.17E-02± 0.07E-02 GeV  (E) = 0.57E-02± 0.06E-02 GeV G0(Mbc) = 5.2808± 0.0003GeV  (Mbc) = 0.25E-02 ± 0.02E-02 GeV Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  4. for Mbc >5.273 GeV N/7.5MeV E for E<30MeV N/2.5MeV Mbc B0 D*-D0K+ LR > 0.005 Fit result (for fully reconstructed region): S/B=0.82 S = 222.4 ±21.5 G0(E) = -0.36E-02± 0.09E-02 GeV  (E) = 0.99E-02± 0.10E-02 GeV G0(Mbc) = 5.2814± 0.0003GeV  (Mbc) = 0.26E-02 ± 0.02E-02 GeV Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  5. BF calculations based on 140fb-1 Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  6. B+ D0D0K+ DsJ(2573) (4160) M2( D0D0) (3770) M( D0K+) M( D0D0 ) Dalitz plot and projections for LR > 0.04 for signal-box events : Background:elliptical strip 6 to 10 in Mbc, E, surrounding the signal region Mbc > 5.273 GeV E<16 MeV (~3 ) M2( D0K+) (4160) (3770) DsJ(2720) DsJ(2720) reflection (4040) N / 20MeV (4160) reflection possible DsJ(2720) (3770)reflection DsJ(2573) N / 20MeV N / 20MeV M( D0 K+) Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  7. for signal-box events : Mbc > 5.273 GeV E<18 MeV (~3 ) Dalitz plot and projections B0 D-D0K+ LR > 0.01 Backgroundnormalized to number of bckgd. events in signal box DsJ(2573) DsJ(2720) N / 20MeV M2( D0D- ) M2( D0K+) M( D-D0 ) DsJ(2720) DsJ(2573) N / 20MeV N / 20MeV M( D0K+) M( D-K+) Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  8. for signal-box events : Mbc > 5.273 GeV E<30 MeV (~3 ) Dalitz plot and projections B0 D*-D0K+ LR > 0.005 Background N / 20MeV M2( D0K+) DsJ(2720) DsJ(2573) M2( D0D*- ) M( D*-D0 ) DsJ(2573) DsJ(2720) N / 20MeV N / 20MeV M( D*-K+) M( D0K+) Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  9. B+ D0D0K+ fitted Signal with error M(D0K+) background subtracted distributions 2dim Mbc vs.E fits in M( D0K+ ) bins B signal in M( D0K+) bins • peak at 2.720 GeV seen, no DsJ(2573) • (3770) region removed: M(D0D0)>3845 Signal / 50MeV • is the (4160) contributing to 2720 peak? • DsJ(2573) • andDsJ(2720) • observed • DsJ(2573) • andDsJ(2720) • observed B0 D*-D0K+ B0 D-D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D0K+) Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  10. (3770) (4160) B+ D0D0K+ Signal / 50MeV Signal / 50MeV (4160) M(D0D0) M(D0D0) M(D0D0) background subtracted distribution for M( D0K+ )peak at 2.7GeV contributed to the (4160)and vice versa (they overlap on Dalitz plot) To estimate of the (4160)contribution to the 2.7GeV peak: M(D0D0) for M(D0K+) > 2.9GeV ( ≡ ½ of the (4160)helicity distr.) (4160)contribution to the 11± 5 events Reflection shape: according to cos2 angular distribution of the polarized (4160) DsJ(2720) Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  11. B+ D0D0K+ B+ D0D0K+ N = 67.7± 12.0 M = 2700± 15 MeV  = 162± 44 MeV N = 65.1± 8.4 M = 2710± 7 MeV  = 112± 22 MeV fitted B Signal M( D0K+) – M(D0K+) „right” - ”wrong” flavour combinations to remove reflections from charmonium states DsJ(2720) Fits to background subtracted D0K+ mass spectra (1) • resonances described by non-relativistic Breit-Wigners • Phase Space (nonresonant component) is described by linear function Signal / 50MeV Signal / 50MeV M( D0K+) non-resonant component + reflection from (4160) DsJ(2720) Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  12. fitted B Signal N = 32.5± 7.9 M = 2573 MeV fixed  = 15 MeV fixed N = 113.7± 14.4 M = 2710 MeV fixed  = 110 MeV fixed N = 12.3 ± 3.6 M = 2573MeV fixed  = 15 MeV fixed N = 113.2± 19.0 M = 2710 MeV fixed  = 110 MeV fixed DsJ(2573) DsJ(2573) DsJ(2720) DsJ(2720) Fits to background subtracted D0K+ mass spectra (2) • resonances described by non-relativistic Breit-Wigners • DsJ(2573)the convolution BW  G(=50MeV) is used • Phase Space (nonresonant component) is described by linear function B0  D-D0K+ B0  D*-D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D0K+) Fit variants: Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  13. K+ D0K+  B D D0 fitted B Signal corrected for acceptance Angular distribution Helicity angle  : angle between K+momentum in D0K+rest frame and D0K+momentum (the boost direction) in B rest frame cosdistribution obtained using 2-dim Mbc vs.E fit ineach cosbin(to subtract background) DSJ(2573) region: B0  D-D0K+ signal-box 2.54 < M(D0K+) < 2.6 GeV (30 MeV window ) Acceptance for MC: B0  D-DsJ(2573)(K)(K) For DsJ(2573)J=2 Ang.distribution:9cos4  - 6cos2  + 1 (previously 3-body D-D0K+MC used) Eff. corrected signal cos Compatible withJ=2 cos Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  14. fitted B Signal corrected for acceptance Angular distribution (2) Acceptance for signal MC B+  D0 DsJ(2720)(K)(K) For DsJ(2720)J=2 assumed Ang.distribution:9cos4  - 6cos2  + 1 (previously 3-body D0D0K+MC used) DsJ(2720) region: B DD0K+ signal-box 2.64 < M(D0K+) < 2.8 GeV (80MeV window ) B+ D0D0K+ Eff. corrected signal cos cos Acceptance for signal MC B0  D-DsJ(2720)(K)(K) For DsJ(2720)J=2 assumed (previously 3-body D-D0K+MC used) B0  D-D0K+ Eff. corrected signal cos cos Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  15. Backup slides Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  16. Analysis method • selection cuts accepted events :R2< 0.3 tracks :IP_dz< 5cmIP_dr< 0.4cm K± :P(K/) > 0.4± :P(/K) > 0.1electron veto: el_id < 0.95 K0S:M(+ -) - MKs <15MeVonly goodK0saccepted 0:E >50 MeVM( ) -M0 <15MeV • D(*) reconstruction D0K, K3, K0, Ks, KKBF ~ 28%of total D± K, Ks, KK, KsKBF ~ 12%of total M(D)-M(DPDG)  < 20MeV ( D0 K0: -50MeV ) vertex fit (cl > 0.) and mass constraint fit applied p(D) < 2 GeVin (4S) system D(*) ± D0± M(D*)-M(D)-mPDG)  < 2.5MeV vertex fit (cl > 0.) • B D(*)D(*)Kreconstruction B vertex fit:with IP and B constraints Mbc> 5.2 GeV -0.40 < E < 0.35 GeV Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  17. D0K D0K3 D0K0 S(MD) LR_D ( MD )= MD MD S(MD) B(MD) + MD D± K D±Ks • best Bcandidate : withmax LR_B • equal LR_B case: larger K±_ID candidate chosen MD MD Multi-candidates events treatment Dplots for ~11fb-1after preselection p(D) < 2GeVin (4S) system D probabilities (LR_D ): LR_D LR_D S(MD), B(MD)parameterization from fits todata (inclusively reconstructed D0, D± in each decaymode separately ) LR_D B probability ( LR_B ): LR_B = LR_D1× LR_D2 LR_D LR_D LR_B used also for backgrounddiscrimination Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  18. B+ D0D0K+ M( D0K+) M( D0D0 ) Background subtracted mass distributions wrong flavour comb. Signal / 50MeV Signal / 50MeV Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  19. fitted B Signal Angular distribution uncorrected for acceptance DSJ(2573) region: B0  D-D0K+ signal-box 2.54 < M(D0K+) < 2.6 GeV B0  D-D0K+ cos DsJ(2720) region: B DD0K+ signal-box 2.64 < M(D0K+) < 2.8 GeV B0  D-D0K+ B+ D0D0K+ cos cos Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

  20. B+ D0D0K+ b  cW - c c s + dd (uu) • External + Internal diagrams • Both DK and DD states expected • D0K+ is exotic _ Physics motivations B  D(*)D(*)K : good place to explore spectroscopy: D(*)K from W vertex Leading quark diagrams: B0  D-D0K+ B0  D*-D0K+ • only External diagram • D0K+is the only non-exotic comb., D*-D0 have > 2q content Jolanta Brodzicka, Henryk PalkaINP Krakow ICPV August 05, 2004

More Related