540 likes | 926 Views
Evnine-Vaughan Associates, Inc. A Theory of Non-Gaussian Option Pricing: capturing the smile and the skew. Lisa Borland. Acknowledgements: Jeremy Evnine Roberto Osorio
E N D
Evnine-Vaughan Associates, Inc. A Theory of Non-Gaussian Option Pricing: capturing the smile and the skew Lisa Borland Acknowledgements: Jeremy Evnine Roberto Osorio Jean-Philippe Bouchaud
Layout • The Stock Price Model • Option Pricing Theory – the Smile • Results • Option Pricing Theory – the Skew • Results • Conclusions
The Standard Stock Price Model Fokker-Planck Equation Gaussian Distribution
The Generalized Returns Model Nonlinear Fokker-Planck Student (Tsallis) Distribution
o Empirical --- Gaussian q=1.43 Tsallis Distribution (Osorio et al 2002)
Extension to Model: Current Model: More realistic model: eg moving average (work in progress )
q=1.5 q=1 SP500 q=1.5
SP500 q=1.5 log P d=16 d=16 d=8 d=8 d=4 d=4 d=2 d=2 d=1 d=1 Y(t+d)-Y(t)
Option Arbitrage Theorem: Deterministic Risk-Free Portfolio Return = risk-free rate r Generalized Black-Scholes PDE
1) Exploit PDE’s implied by arbitrage-free portfolios Solve PDE to get option price 2) Convert prices of assets into martingales Take expectations to get option price
Martingale: Not a martingale w.r.t. measure F
Martingale: Not a martingale w.r.t. measure F Is a martingale w.r.t. measure Q Effectively:
Example European Call Stock Price
Example European Call Stock Price Must integrate
Generalized Feynman-Kac Tsallis (Student) weights Path Integral: Forward Equation: Ansatz: Result:
Generalized Feynman-Kac Result:
Example European Call Stock Price
Example European Call Stock Price Payoff if q = 1: P is Gaussian q >1 : P is fat tailed Student(Tsallis) dist.
Call Price Difference T=0.6 T=0.05 $ =0.3 S(0) = $50, r= 6%,
T=0.1 T=0.4 Black-Scholes (q=1) volatilities implied from q=1.5 model
q=1 q=1.3 q=1.4 q=1.45 q=1.5 K=50, T=0.4, sigma=0.3, r=.06
Volatility Smiles o Empirical implied vols __ q=1.43 implied vols
Term Structure q=1.4 (Vol Surface) q=1 (BS)
Example Currency Futures: (500 options) q Mean square relative pricing error 1. 0.16 1.4 0.008 Benefits of a more parsimonious model: • Better pricing - arbitrage opportunities • Better hedging
The Generalized Model with Skew Volatility Leverage Correlation (with Jean-Philippe Bouchaud)
The Generalized Model with Skew (with Jean-Philippe Bouchaud)
The Generalized Model with Skew small (with Jean-Philippe Bouchaud)
Example European Call Integrate using Feynman-Kac and Pade expansion Payoff if
Comments • q=1: CEV model of Cox and Ross recovered • Skew model can be mapped onto a higher dimensional free-particle diffusion in cylindrical coordinates • Exact solutions in terms of hyper-geometric functions ?
Volatility Skew : T=0.1 T=0.5 T=1.0 alpha = 0. S(0) = 50
S0=50 T=0.5 sigma=0.3 r=0.06 q=1.5
q=1 q=1.5 K=50,T=0.5,sigma=0.3,r=.06
SP500 OX q=1.5, alpha = -1. T=.03 T=0.1 T=0.2 T=0.3 T=0.55 Strike K Strike K
MSFT Nov 19 2003 ATM = 25.55 T=.082 T=.159 T=.41 T=1.17