1 / 58

Model Post Processing

Model Post Processing. Model Output Can Usually Be Improved with Post Processing. Can remove systematic bias Can produce probabilistic information from deterministic information and historical performance.

cbranton
Download Presentation

Model Post Processing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Model Post Processing

  2. Model Output Can Usually Be Improved with Post Processing • Can remove systematic bias • Can produce probabilistic information from deterministic information and historical performance. • Can provide forecasts for parameters that a model is incapable of simulating successfully due to resolution or physics issues (e.g., shallow fog)

  3. Model Output Statistics (MOS) • Model Output Statistics was the first post-processing method used by the NWS (1969) • Based on multiple linear regression. • Essentially unchanged over last 40 years. • Does not consider non-linear relationships between predictors and predictands. • Does take out much of systematic bias.

  4. Based on Multiple Linear Regression Y=a0 + a1 X1+ a2X2 + …

  5. Day 2 (30-h) GFS MOS Max Temp Equation for KSLC (Cool Season – 0000 UTC cycle)

  6. Day 2 (42-h) GFS MOS Max Temp Equation for KUNV (Warm Season – 1200 UTC cycle)

  7. Day 2 (30-h) GFS MOS Min Temp Equation for KDCA (Cool Season - 1200 UTC cycle) Develop / Evaluate

  8. MOS Developed by and Run at the NWS Meteorological Development Lab (MDL) • Full range of products available at: http://www.nws.noaa.gov/mdl/synop/index.php

  9. Global Ensemble MOS • Ensemble MOS forecasts are based on the 0000 UTC run of the GFS Global model ensemble system. These runs include the operational GFS, a control version of the GFS (run at lower resolution), and 20 additional runs. • Older operational GFS MOS prediction equations are applied to the output from each of the ensemble runs to produce 21 separate sets of alphanumeric bulletins in the same format as the operational MEX message.

  10. Gridded MOS • The NWS needs MOS on a grid for many reasons, including for use in their IFPS analysis/forecasting system. • The problem is that MOS is only available at station locations. • To deal with this, NWS created Gridded MOS. • Takes MOS at individual stations and spreads it out based on proximity and height differences. Also does a topogaphic correction dependent on reasonable lapse rate.

  11. Current “Operational” Gridded MOS

  12. Localized Aviation MOS Program(LAMP) • Hourly updated statistical product • Like MOS but combines: • MOS guidance • the most recent surface observations • simple local models run hourly • GFS output

  13. Practical Example of Solving a LAMP Temperature Equation Y = b + a1x1 + a2x2 + a3x3 + a4x4 Y = LAMP temperature forecast Equation Constant b = -6.99456 Predictor x1 = observed temperature at cycle issuance time (value 66.0) Predictor x2 = observed dew point at cycle issuance time (value 58.0) Predictor x3 = GFS MOS temperature (value 64.4) Predictor x4 = GFS MOS dew point (value 53.0)

  14. Theoretical Model Forecast Performance of LAMP, MOS, and Persistence

  15. Verification of LAMP 2-m Temperature Forecasts

  16. MOS Performance • MOS significantly improves on the skill of model output. • National Weather Service verification statistics have shown a narrowing gap between human and MOS forecasts.

  17. Cool Season Mi. Temp – 12 UTC Cycle Average Over 80 US stations

  18. MOS Won the Department Forecast Contest in 2003 For the First Time!

  19. Average or Composite MOS • There has been some evidence that an average or consensus MOS is even more skillful than individual MOS output. • Vislocky and Fritsch (1997), using 1990-1992 data, found that an average of two or more MOS’s (CMOS) outperformed individual MOS’s and many human forecasters in a forecasting competition.

  20. UW MOS Study • August 1 2003 – August 1 2004 (12 months). • 29 stations, all at major NWS Weather Forecast Office (WFO) sites. • Evaluated MOS predictions of maximum and minimum temperature, and probability of precipitation (POP).

  21. National Weather Service locations used in the study.

  22. Forecasts Evaluated • NWS Forecast by real, live humans • EMOS: NAM MOS • NMOS: NGM MOS • GMOS: GFS MOS • CMOS: Average of the above three MOSs • WMOS: Weighted MOS, each member is weighted by its performance during a previous training period (ranging from 10-30 days, depending on each station). • CMOS-GE: A simple average of the two best MOS forecasts: GMOS and EMOS

  23. The Approach: Give the NWS the Advantage! • 08-10Z-issued forecast from NWS matched against previous 00Z forecast from models/MOS. • NWS has 00Z model data available, and has added advantage of watching conditions develop since 00Z. • Models of course can’t look at NWS, but NWS looks at models. • NWS Forecasts going out 48 (model out 60) hours, so in the analysis there are: • Two maximum temperatures (MAX-T), • Two minimum temperatures (MIN-T), and • Four 12-hr POP forecasts.

  24. Temperature Comparisons

  25. Temperature MAE (F) for the seven forecast types for all stations, all time periods, 1 August 2003 – 1 August 2004.

  26. Precipitation Comparisons

  27. Brier Scores for Precipitation for all stations for the entire study period.

  28. The Private Sector Has Gone Beyond MOS to Superior Post Processing

  29. They don’t do traditional MOS!

  30. Dynamic MOS Using Multiple Models • MOS equations are updated frequently, not static like the NWS. • Multiple model and observation inputs • Example: DiCast used by the Weather Channel and Accuweather, Developed by NCAR

  31. Dynamical MOS of MOSs

  32. DICAST skill is quite good

  33. ForecastAdvisor.com

  34. https://www.forecastadvisor.com/

  35. Better than NWS MOS

  36. New NWS Approach: National Blend of Models • Ghe National Blend of Models (NBM) is a nationally consistent and skillful suite of calibrated forecast guidance based on a blend of both NWS and non-NWS numerical weather prediction model data and post-processed model guidance. • The goal of the NBM is to create a highly accurate, skillful and consistent starting point for the gridded forecast.

  37. Blend • This first version used 3 models (GFS, GEFS mean, CMCE mean) and provided temperature, wind, and sky cover over the CONUS region two times a day. • Added more parameters and models recently • 2.5 km grid

More Related